Login

Proceedings

Find matching any: Reset
Add filter to result:
A Decade of Precision Agriculture Impacts on Grain Yield and Yield Variation
M. A. Yost, N. Kitchen, K. Sudduth, S. Drummond, J. Sadler
USDA-ARS

Targeting management practices and inputs with precision agriculture has high potential to meet some of the grand challenges of sustainability in the coming century, including simultaneously improving crop yields and reducing environmental impacts. Although the potential is high, few studies have documented long-term effects of precision agriculture on crop production and environmental quality. More specifically, long-term impacts of precision conservation practices such as cover crops, no-tillage, diversified crop rotations, and precision nutrient management on field-scale crop production across landscapes are not well understood. To better understand these impacts, a 36-ha field in central Missouri was monitored for over a decade as both a conventional (1991-2003) and a precision agriculture system (PAS) (2004-2014). Conventional management was annual mulch-tillage in a 2 yr corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] rotation. Key aspects of the PAS were the addition of no-tillage, cover crops, winter wheat (Triticum aestivum L.) instead of corn on areas with shallow topsoil and low corn profitability, and variable-rate nutrient (N, P, K, and lime) applications. The objective of this research was to evaluate how over a decade of PAS influenced temporal and spatial dynamics of grain yield. In the northern half of the field, wheat in PAS had higher relative grain yield and reduced temporal yield variation on shallow topsoil, but reduced relative grain yield on deep soil in the drainage channel compared to pre-PAS corn. In the southern half of the field where corn remained in production, PAS did not increase yield, but did reduce temporal yield variability. Across the whole field, soybean yield and temporal yield variation were only marginally influenced by PAS. Spatial yield variation of any crop was not altered by PAS. Therefore, the greatest production advantage of a decade of precision agriculture was reduced temporal yield variation, which leads to greater yield stability and resilience to changing climate.

Keyword: Precision conservation, Precision nutrient management, Integrated Precision practices, Crop production, No-till, Cover crops