Login

Proceedings

Find matching any: Reset
Add filter to result:
Field-scale Nitrogen Recommendation Tools for Improving a Canopy Reflectance Sensor Algorithm
1C. J. Ransom, 2M. Bean, 1N. Kitchen, 3J. Camberato, 4P. Carter, 5R. B. Ferguson, 6F. G. Fernandez, 7D. W. Franzen, 8C. Laboski, 9E. Nafziger, 10J. Sawyer, 4J. Shanahan
1. University of Missouri
2. Univesrity of Missouri
3. Purdue University
4. DuPont Pioneer
5. University of Nebraska-Lincoln
6. University of Minnesota
7. North Dakota State Univeristy
8. University of Wisconsin-Madison
9. University of Illinois at Urbana-Champaign
10. Iowa State University

Nitrogen (N) rate recommendation tools are utilized to help producers maximize grain yield production. Many of these tools provide recommendations at field scales but often fail when corn N requirements are variable across the field. This may result in excess N being lost to the environment or producers receiving decreased economic returns on yield. Canopy reflectance sensors are capable of capturing within-field variability, although the sensor algorithm recommendations may not always be as accurate at predicting corn N needs compared to other tools. Therefore, the integration of within-field canopy reflectance sensor tools with field-scale N recommendation tools may help account for yield variability from N applications, and improve N rate recommendations by utilizing the strengths of multiple tools. Research was conducted to determine which N rate recommendation tool was most effective at recommending economical optimal N rates (EONR) under varying soil and weather conditions across the Corn Belt. A second objective using a canopy reflectance algorithm was evaluated to by changing the base N rate of the algorithm which was determined by these tools. Research was conducted on N response plots across eight U.S. Midwest states in 2014 and 2015. Two sites from each state totaling 32 site years, resulting in a range of historically productive areas, were used to evaluate differences in soil and weather environments. Field-scale tools that were compared included pre-plant soil nitrate test, pre-sidedress soil nitrate test, maximum return to N (MRTN), yield goal based calculations, and the Maize-N crop growth model. These tools were also compared to N recommendations form a canopy reflectance sensor using the Holland and Schepers algorithm. Tools were evaluated for an at-planting and/or sidedress N application. Each tool’s performance was evaluated using the root mean square errors (RMSE) and the average difference of the tool’s N recommendation to the measured site’s EONR, and the percentage of sites where the N recommendations were within 30 kg N ha-1 of EONR. A second objective was to determine if the Holland and Schepers algorithm could be improved by integrating the best performing N recommendation tools that were previously evaluated. Tools were integrated by replacing the base N rate, or the farmer’s historical N rate, with the N recommended from the best performing tools. Results of comparing the performance of all tools showed that for recommendations made at-planting the Wisconsin PPNT, MRTN and state-specific yield goals performed the best. For sidedress recommendations MRTN and state-specific yield goal recommendations were the best performing tools. The canopy reflectance sensor using the farmer’s N rate as the base N rate for the algorithm recommendation did not perform as well as the farmer’s N rate as a standalone recommendation. For the second objective of replacing the farmer’s N rate as the base N rate in the algorithm with MRTN or the state-specific yield goal showed minimal improvement. The canopy reflectance sensor performed better when using the scaling factor to increase the MRTN and state-specific yield goal calculations by a factor of 1.75 and 1.65, respectively. The canopy reflectance sensor was best improved by adding 56 and 70 kg N ha-1 to the overall Holland and Schepers algorithm when using MRTN and the state-specific yield goal as the base N rate, respectively. Overall, using these tools as the base N rate for this algorithm is not appropriate as it caused under-recommendations of EONR and growers would be required to speculate on the scaling factor or how much extra N to apply to the recommendation in order to maximize the performance.

Keyword: Nitrogen recommendation, Maize-N, Canopy reflectance sensors, PPNT, PSNT, Yield goal, MRTN, Maximum return to nitrogen, and Corn