
ESTIMATING THE PLANT STEM EMERGING POINTS (PSEPS) OF 
SUGAR BEETS AT EARLY GROWTH STAGES 
 
     H. S. Midtiby, R. N. Jørgensen, T. M. Giselsson 
 
     Inst. of Chemical Engineering, Biotechnology and Environmental Technology 
     University of Southern Denmark 
     Odense, Denmark 
 
 
 

ABSTRACT 
 
Successful intra–row mechanical weed control of sugar beet (beta vulgaris) in 
early growth stages requires precise knowledge about location of crop plants. A 
computer vision system for locating Plant Stem Emerging Point (PSEP) of sugar 
beet in early growth stages was developed and tested. The system is based on 
detection of individual leaves; each leaf location is described by center of mass 
and petiole location. After leaf detection the true PSEP locations were annotated 
manually and a multivariate normal distribution model of the PSEP relative to the 
located leaf was generated. From testing the system, PSEP estimates based on a 
single leaf have an average error of ~ 3mm. When several leaves are detected the 
average error decreases to less than 2mm. 
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INTRODUCTION 
 
Mechanical inter-row weeding between crop rows has been used for a long time. 
However, mechanical intra-row weeding within rows between the single crop 
plants is relatively new. Physical intra-row methods can, in general, rely on three 
different strategies (Griepentrog & Dedousis, 2010: chap. 11): (1) soil coverage of 
weeds or (2) weed root/stem cutting or (3) uprooting of weeds (whole plant or 
partly). The first option is only relevant in some crop types such as cereals and 
potatoes. Sugar beet (beta vulgaris) at the dicotyledon stage does not belong to 
these groups (Kouwenhoven, 1997; Melander, 2000) and only strategy (2) and (3) 
may be used. Several intra-row mechanical weed management methods need to 
know where the crop plants are located, especially with concern to the plant stem 
emerging point (PSEP) which is defined as the point where the plant stem 
emerges from the soil surface. This paper describes and evaluates a vision based 
method which detects single crop leaves and predicts where the corresponding 
PSEP is located. 
 



 
 

 
Figure 1: Typical leaf shapes of sugar beets. 
 
 

MATERIALS AND METHODS 
 
The current work consists of three parts: (1) development of a leaf detector, (2) 
building of a relative PSEP model, and (3) using the relative PSEP model to 
predict true PSEP based on detected leaves.  
 

Image acquisition 
 
Binary images of sugar beet seedlings in growth stages BBCH10-14 (Meier, 
2001) were acquired with the Robovator (Poulsen, 2010). A single pixel measured 
approximately 1.1 mm by 1.1 mm.  
 

Leaf extraction 
 
Examples of leaf shapes are shown in Fig.1. The structure consisted of a large 
mainly convex region attached to the rest of the plant via a thin stem (petiole) 
(Meier, 2001). The leaf extraction method works in two steps. First convex 
regions are located and marked as leaf tip candidates. From the located leaf tip 
candidate a search for the corresponding petiole is then initiated. If a petiole was 
located a leaf was found. When a leaf was detected the leaf location and 
orientation was described by petiole location 𝑆 and the leaf center of mass 𝐶. 
 

Leaf tip candidate location 
 
Leaf tip candidates were found at local curvature minima of the plant boundary. 
The direction of the boundary before the point of interest is the direction of the 
vector connecting the current point with a point seen 12 steps earlier along the 
boundary. The direction of the boundary after the point of interest is calculated 
similarly. Boundary curvature is estimated as the difference between the 
orientation before and after the point of interest. Plant boundary and curvature 
along the boundary is visualized in Fig. 2. Local maxima correspond to concave 
regions. Local minima correspond to convex regions such as leaf tips. To locate a 
candidate leaf tip for each leaf, the following steps were used: (1) division of the 



boundary into concave and convex regions, (2) location of the minima in each 
convex region and (3) thresholding of the located minima. The purpose of the first 
step was to split the boundary into segments that at most contained a single leaf 
tip. Locations where the curvature estimate changed sign were used as splitting 
points. The second step found the most likely leaf tip location, which were the 
points along the boundary where the boundary was convex and the change of 
direction was maximized. Step three removed possible leaf tip locations according 
to the magnitude in change of direction, if the change of direction was too small 
(i.e. less than 1 radians) the candidate was eliminated. 
 

Location of corresponding petiole 
 
From each of the candidate leaf tips a search for the corresponding petiole was 
initiated. Two boundary walkers were placed at the leaf tip with the goal of 
following the boundary in each direction, one clockwise and one 
counterclockwise. The movement of the walkers was controlled such that they 
reached the petiole nearly simultaneously. The distance between the walkers was 
measured during their motion. In Fig. 3 the search strategy is visualized. For each 
value of the distance threshold the corresponding circle was drawn together with 
the two walker locations. To locate the petiole, the distance between the walkers 
was investigated as follows: (1) search for a narrow leaf region which initiated the 
region in which the petiole could be located followed by (2) a search for a 
broadening of the leaf width which ends the region in which the petiole could be 
found. The leaf boundary cut-off positions were given by the location of the 
walkers when they were closest together during the "leaf-state". The petiole 
location was set to the midpoint of the two boundary cut-off positions.  
 
 
 

 
Figure 2: Contour of plant seedling and the estimated curvature along the 
contour. 
 
 
 



 
Figure 3: Visualization of the stem search procedure. 
 
 

Manual marking of root/leaf relative locations 
 
After the automatic extraction of plant leaves, real PSEP locations were marked 
manually. To describe the marked PSEP location relative to the extracted leaf, the 
leaf coordinate system is placed with origin located at the petiole 𝑆 and direction 
of the x axis parallel to the vector 𝐶 − 𝑆. An example is shown in Fig. 6. PSEP 
locations were marked with a single pixel, so the average quantization error will 
be about 0.5 mm along each dimension. The true PSEP locations marked by an 
operator will also have an uncertainty. To estimate size of the typical error in this 
process the same image was annotated by two persons. Differences in PSEP 
locations were calculated and mean distance between annotations was determined. 
 

PSEP location model 
 
A multivariate normal distribution was used to model the PSEP location relative 
to the leaf coordinate system. The model was defined as: 
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where �⃗�𝑙𝑐 is the centre of the true PSEP estimate and ∑𝑙𝑐 is the covariance matrix. 
Both �⃗�𝑙𝑐 and ∑𝑙𝑐 are expressed in the leaf coordinate system. Ellipses were used 
to visualise the multivariate normal distribution, contours of certain values are 
drawn such that a given fraction of the probability is inside the ellipse. The used 
fractions for visualization are 68%, 95% and 99.7%.  
 
 
 



 
Figure 4: Leaf coordinate system and the generated PSEP location model. 
 
 

Combination of relative PSEP location models 
 
In many cases it is possible to detect more than a single leaf, an example is shown 
in Fig. 5. In the figure 99.7% ellipses of the two estimates of the true PSEP share 
a common region and it could be expected that the true PSEP was located within 
this region. To combine two PSEP models (𝑝𝐴(�⃗�) and 𝑝𝐵(�⃗�)) the probability 
densities are multiplied and normalised.  
     𝑝𝐴(�⃗�) ∝ 𝑝𝐴(�⃗�) ∗ 𝑝𝐴(�⃗�)  
The parameters of the combined models were calculated directly from the 
parameters of models A and B according to (Gales & Airey, 2006). 
 
 
 

 
Figure 5: Combination of two PSEP models. 
 
 
 

 



Generation of position predictions 
To test the developed method for PSEP estimation, the method was applied to a 
few test images. True plant locations were determined manually and compared to 
estimated PSEP locations. From each of the detected leaves a PSEP estimate was 
generated. When multiple PSEP estimates were close to each other, they were 
combined to provide hopefully improved estimates. 
 

Performance evaluation 
The accuracy of the estimated PSEP locations was quantified by measuring the 
distance from the estimated PSEP location to the nearest true PSEP location. The 
true PSEP locations were based on manual annotations. 
 

RESULTS 
 

Leaf detector performance 
 
For evaluating performance of the leaf detector, the 805 leaves present in test 
images were counted manually. The leaf detector located 46.6% (395) leaves, of 
those were 2.4% (19) FPs. 
 

Relative PSEP model 
 
The leaf detector was applied to three images. True PSEPs were marked by hand 
in all three images. Leaves were detected by the leaf detector method and their 
location specific information recorded. Analyzing leaves and PSEPs led to the 
generation of 223 data points. In the local leaf coordinate system the multivariate 
normal distribution model was described by the parameter values: 

     �⃗�𝑙𝑐 = �5.40𝑚𝑚
0.24𝑚𝑚�  and ∑𝑙𝑐 = �12.65 1.28

1.28 2.35�𝑚𝑚
2  

 
Error distribution in PSEP estimates 

 
The errors of PSEP estimates based on one, two, three and four leaves were 
calculated. The distribution of errors is visualized in figure 6. 10% of the 
estimates based on a single leaf had an error larger than 4 mm. The similar 
number for estimates based on two or more leaves was below 3 mm. A huge 
increase in the accuracy is seen when the number of leaves is increased from one 
to two, additional leaves also reduce the error but not as much. When using more 
than two leaves the accuracy of the system was similar to the error in human 
annotation. 
 
 



 
Figure 6: Errors in PSEP estimates based on one, two, three or four detected 
leaves compared to human annotation. 
 
 

DISCUSSION 
 
The leaf detector was not able to locate all leaves in the test images. This was due 
to overlapping leaves, leaves with irregular shapes and, to a certain extent, 
limitations in the implemented algorithm. 
     When the leaf detector found two leaves of a single plant the corresponding 
true PSEP will, with a probability of 95%, be within a distance of 5 mm or less 
from the estimate. Sun et al. (2010) were able to measure the position of 
transplanted crops with an RTK-GPS unit within 51 mm for 95% of the plants. 
The accuracy of the vision system was therefore one order of magnitude better 
than RTK-GPS mapping of plants. When three or more leaves were used to 
predict PSEPs the accuracy was comparable to the human annotation. One 
interpretation of this is that the developed method can predict PSEPs with a 
higher accuracy than the reference predictions based on manual annotation given 
that two or more leaves are detected for each PSEP. 
 
 

CONCLUSION 
 
A system for automated PSEP estimation of sugar beet plants (in growth stages 
BBCH10-14) based on leaf detection has been developed and tested. In a set of 
test images the system detected 46.7% of the present leaves. A multivariate 
Gaussian PSEP model was generated based on the detected leaves and manual 
annotation of true PSEPs. Given center of mass and attach point of a single leaf 



the model stated that the average true PSEP was at a distance of 6.2 mm from the 
petiole attachment point and placed on the line connecting the leaf attach point 
and the leaf center of mass. In the set of test images the detected leaves were used 
to predict the true PSEPs. When several leaves of the same plant are detected, the 
PSEP models can be combined using least-squares estimation and thus produce an 
even better estimate of the true root location. For example, by combining two 
leaves the average error was reduced to 1.9 mm. Precise quantification of the error 
in three and four leaf based PSEP estimates is hindered as these methods 
performed on par with the human annotation used as reference. 
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