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ABSTRACT 

The prediction errors of crop models are often important due to 
uncertainties in the estimates of initial values of the states, in parameters, and in 
equations. The measurements needed to run the model are sometimes not 
numerous or known with some uncertainty.  

In this paper, two Bayesian filtering methods were used to update the state 
variable values predicted by MiniSTICS model. The chosen state variates were 
the LAI (Leaf Area Index) of a wheat crop (Triticum aestivum L.) and the 
corresponding moisture content of two soil layers (0-20 cm and 30-50 cm). These 
state variates were estimated simultaneously with several parameters. The 
assessed filtering methods were the centralized Particle Filtering (PF) and the 
Variational Bayesian Filtering (VF). The former is known to be sensitive to the 
number of particles while the latter yields an optimal choice of the sampling 
distribution over the state variable by minimizing the Kullback-Leibler 
divergence. In fact, variational calculus leads to a simple Gaussian sampling 
distribution whose parameters (estimated iteratively) depends on the observed 
data. On basis of a case study, the VF method was found more efficient than the 
PF method. Indeed, with the VF, the  Root Mean Square Error (RMSE) of the 
three estimated states was smaller and the convergence of the all parameters was 
ensured.   
 
 
Keywords: Crop model, nonlinear states and parameters estimation, Variational 
Bayesian filter, LAI and soil moisture predicting, STICS model. 
 
 

INTRODUCTION 

Crop models such as EPIC (Williams et al., 1989), WOFOST (Diepen et 
al., 1989), DAISY (Hansen et al., 1990), STICS (Brisson et al., 1998), and 
SALUS (Basso and Ritchie, 2005) are dynamic non-linear models that describe 
the growth and development of a crop interacting with environmental factors (soil 
and climate) and agricultural  practices (crop species, type of tillage, fertilizer 
amount,… ). They are developed to predict crop yield and quality or to optimize 
the farming practices in order to satisfy environmental objectives, as the reduction 



 
 

of nitrogen lixiviation. More recently, crop models are used to simulate the effects 
of climate changes on the agricultural production.  

Nevertheless, the prediction errors of these models may remain important 
due to uncertainties in (i) the estimates of initial values of the states, (ii) the input 
data, (iii)  the parameter values, and (iv) the equations and formalisms used to 
represent the reality (physically based or empirical). The measurements needed to 
run the model are sometimes not numerous, whereas the field spatial variability 
and the climatic temporal fluctuations over the field may be high. The lack of 
measurement accuracy is rather difficult to estimate. 

For these reasons, the problem of state/parameter estimation represents a 
key issue in such nonlinear and non Gaussian crop models including a large 
number of parameters, while measurement noise exists in the data. In this context, 
state/parameter model estimation may be considered as an optimal filtering 
problem, which consists of recursively updating the posterior distribution of the 
unobserved state given the sequence of observed data and the state evolution 
model. 

The estimation problem has been addressed with several methods, such as 
the Kalman Filter (KF) which provides an optimal Bayesian solution but is 
limited by the non-universal Gaussian modeling assumptions. An application of 
this technique to a linear dynamic crop model predicting a single state variable 
“winter wheat biomass” is presented by Makowski et al. (2004). The method 
remains computationally efficient, but is limited by its strong assumption. The 
authors showed how the model predictions can be sequentially updated by using 
several measurements, and studied the sensitivity of the results to the variance of 
the model errors. The Ensemble Kalman Filtering (EnKF) (Xiao et al., 2009), 
Extended Kalman Filtering (EKF) (Calvet, 2000), and the Unscented Kalman 
Filtering (UKF) (Wan and Merwe, 2009) have been proposed to improve the KF 
flexibility. Xiao et al. (2009) have developed a real-time inversion technique to 
estimate LAI (Leaf Area Index) from MODIS data using a coupled dynamic and 
radiative transfer models. But till now, there are few studies with encouraging 
works considering simultaneous estimation of states and model parameters where 
the nonlinear observed system is assumed to progress according to a probabilistic 
state space model. For most non-linear models and non-Gaussian noise 
observations, closed-form analytic expression of the posterior distribution of the 
state is untractable (Kotecha and Djuric, 2003). To overcome this drawback, a 
nonparametric Monte Carlo sampling based method called Particle Filtering (PF) 
has recently gained popularity (Doucet and Tadic, 2003). The latter method 
presents several advantages since: (i) it can account for the constraint of small 
number of data samples, (ii) the online update of the filtering distribution and its 
compression are simultaneously performed, and (iii) it yields an optimal choice of 
the sampling distribution over the state variable by minimizing the Kullback-
Leibler (KL) divergence.  

Recently, a variational filtering (VF) has been proposed for solving the 
non linear parameter estimation problem (Mansouri et al., 2009), but till now, the 
method has been applied only for the tracking/localization in wireless sensor 
networks problem. The variational Bayesian filter can be applied to large 
parameter spaces, has better convergence properties and is easier to implement 
than the particle filter. Both of them can provide improved accuracy over the 



 
 

extended Kalman filter. Nevertheless, some practical challenges can affect the 
accuracy of estimated states and/or parameters, namely the presence of 
measurement noise in the data, the availability of small number of measured data 
samples, and the larger number of model parameters. 

The objectives of the paper are to compare two methods (PF and VF) for 
estimating important state variates of crop models. The LAI (Leaf Area Index) 
determines the photosynthetic primary production and the plant 
evapotranspiration and is thus a key state to characterize the plant growth. The 
moisture content of two soil layers (0-20 cm and 30-50 cm) was considered as it 
affects the capacity of plants to extract water and soil nutrients. The comparison 
will rely on the computation of the RMSE and the number of parameters that can 
be accurately predicted. The model used in this study is mini STICS which has 
several advantages since it can reduce the computing and execution times and has 
the nice property to be good dynamic model, ensuring the robustness of data 
processing and estimation.  

 
MATERIAL AND METHODS 

Problem Statement 
 

Let a nonlinear state space model be described as follows: 
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where 𝑥 ∈ 𝑅𝑛 is a vector of the state variables, 𝑢 ∈ 𝑅𝑝  is a vector of the input 
variables, 𝜃 ∈ 𝑅𝑞 is an unknown parameter vector, 𝑦 ∈ 𝑅𝑚 is a vector of the 
measured variables, g  and l  are nonlinear differentiable functions, and  𝑤 ∈ 𝑅𝑛  
and 𝑣 ∈ 𝑅𝑚 are respectively process and measurement noise. Discretizing the 
state space model (1), the discrete model can be written as follows: 
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which describes the state variables at some time step ( k ) in terms of their values 
at a previous time step ( 1k − ). Let the process and measurement noise vectors 
have the following properties: 

 
 [ ] 0kE w = , T

k k kE w w Q  =  , [ ] 0kE v = , T
k k kE v v R  =   

 
Since in this problem, we are interested to estimate the state vector kx , as 

well as the parameter vector kθ , let’s assume that the parameter vector is 
described by the following model: 
 



 
 

1 1k k kθ θ γ− −= +      (3) 
 
where 1kγ −  is white noise. In other words, the parameter vector model (3) 
corresponds to a stationary process, with an identity transition matrix, driven by 
white noise. We can define a new state vector that augments the two vectors 
together as follows: 
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where 𝑧𝑘 ∈ 𝑅𝑛+𝑞 is assumed to follow a Gaussian model as  𝑧𝑘~𝑁(𝜇𝑘, kλ ), and 
where at any time k  the expectation 𝜇𝑘 and the covariance matrix kλ  are both 
constants. Also, defining the augmented vector,  
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the model (2) can be written as: 
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Variational Bayesian Filter 

The distribution of interest for state estimation takes the form of a 
marginal posterior distribution ( )1:|k kp z y . The variational Bayesian method is 

proposed for approximating intractable integrals arising in Bayesian statistics. 
Using a separable approximating distribution  𝑞�𝑧𝑘 � = ∏ 𝑞(𝑧𝑘𝑖 )𝑖  to minimize the 
lower bound of the marginal likelihood, an analytical approximation of the 
posterior probability ( )1:|k kp z y  is provided by minimizing the Kullback-Leibler 

(KL) divergence: 

     𝐷𝐾𝐿(𝑞‖𝑝) = ∫ 𝑞�𝑧𝑘 � log
𝑞�𝑧𝑘 �

𝑝�𝑧𝑘 �𝑦1:𝑘�
𝑑𝑧𝑘      (7) 

where 𝑞�𝑧𝑘 � = ∏ 𝑞(𝑧𝑘𝑖 )𝑖 . 

To minimize the KL divergence subject to the constraint ∫ 𝑞�𝑧𝑘 �𝑑𝑧𝑘 =
1 = ∏ ∫𝑞�𝑧𝑘𝑖 �𝑑𝑧𝑘𝑖 = 1𝑖  , the Lagrange multiplier method is used, yielding the 
following approximate distribution (Vermaak et al., 2003), 



 
 

   𝑞�𝑧𝑘𝑖 � ∝ 𝑒𝑥𝑝 < log𝑝(𝑦1:𝑘, 𝑧𝑘 ) >∏ 𝑞(𝑧𝑘
𝑗)𝑗≠𝑖  ,     (8) 

where <. >𝑞(𝑧𝑘
𝑗)  denotes the expectation operator relative to the distribution  

𝑞(𝑧𝑘
𝑗) . Therefore, these dependent parameters can be jointly and iteratively 

updated. Taking into account the separable approximate distribution 𝑞(𝑧𝑘−1) at 
time 𝑘 − 1,  the filtering distribution 𝑝(𝑦1:𝑘, 𝑧𝑘 ) is sequentially approximated 
according to the following scheme: 

                         𝑝̂�𝑦1:𝑘, 𝑧𝑘 � ∝ 𝑝(𝑦𝑘 , 𝑧𝑘 )𝑝(𝑧𝑘 )   (9) 

Therefore, through a simple integral with respect to µ𝑘−1, the filtering distribution  
𝑝�𝑧𝑘 �𝑦1:𝑘� can be sequentially updated. However, the state 𝑧𝑘 does not have a 
tractable approximate distribution because of the nature of the system model. By 
combining equations (8) and (9), we have 

𝑞�𝑧𝑘 � ∝ 𝑝�𝑦𝑘 , 𝑧𝑘 �𝑁 �< µ𝑘 >, < kλ >�   (10) 

This form immediately suggests an IS procedure, where samples are drawn from 
the Gaussian distribution 𝑁(< µ𝑘 >, < kλ >) and weighted according to their 
likelihoods: 

𝑧𝑘
(𝑖)~ 𝑁 �< µ𝑘 >, < kλ >� , 𝑙𝑘

(𝑖)  ∝ ∏ 𝑝 �𝑧𝑘
𝑗�𝑦1:𝑘

(𝑖)�𝑁
𝑗=1        (11)        

Then, the estimate of the augmented state 𝑧̂𝑘 can be approximated by a Monte 
Carlo scheme: 

        𝑧̂𝑘 = ∑  𝑧𝑘
(𝑖)𝑙𝑘

(𝑖)𝑁
𝑖=1      (12) 

In the Bayesian inference framework, besides updating the filtering 
distribution 𝑝�𝑧𝑘 �𝑦1:𝑘�, the predictive distribution 𝑝�𝑧𝑘 �𝑦1:𝑘−1� needs to be 
computed. The predictive distribution 𝑝�𝑧𝑘 �𝑦1:𝑘−1� can be efficiently updated by 
variational inference. Taking into account the separable approximate 
distribution 𝑞�𝑧𝑘−1� ∝ 𝑝�𝑧𝑘−1�𝑦𝑘−1�, the predictive distribution can be 
expressed as 

𝑝�𝑧𝑘 �𝑦1:𝑘−1� = ∫𝑝�𝑧𝑘 �𝑧𝑘−1�𝑞�𝑧𝑘−1� 𝑑𝑧𝑘−1    (13) 

The predictive distribution that minimizes the Kullback-Leibler divergence yields 
the following Gaussian distribution: 

  𝑞𝑘|𝑘−1�𝑧𝑘 � = 𝑁 �< µ𝑘 >𝑞𝑘|𝑘−1 , < kλ >𝑞𝑘|𝑘−1�   (14) 



 
 

and the predictive expectations of the state can be evaluated by the following 
expressions: 

< 𝑧𝑘 >𝑞𝑘|𝑘−1=< µ𝑘 >𝑞𝑘|𝑘−1 , 

< 𝑧𝑘𝑧𝑘𝑇 >𝑞𝑘|𝑘−1=< kλ >𝑞𝑘|𝑘−1
−1 +   < µ𝑘 >𝑞𝑘|𝑘−1< µ𝑘 >𝑞𝑘|𝑘−1

𝑇  (15) 

Compared with the PF, the computational cost and the memory 
requirements associated with the VF are dramatically reduced by the variational 
approximation in the prediction phase. In fact, the expectations involved in the 
computation of the predictive distribution have closed forms, avoiding the use of 
Monte Carlo integration. 

 
Case study and crop model presentation 

The original data were issued from experiments carried out on a silty soil 
in Belgium, with a wheat crop (Triticum aestivum L., cultivar Julius), during 3 
consecutive years, the crop seasons 2008-09, 2009-10 and 2010-11. A wireless 
monitoring system (eKo pro series system, Crossbow) completed by a 
micrometeorological station was used for measuring continuously soil and climate 
characteristics. Especially, the measurements of soil water content were 
performed at 20 and 50 cm depth. The plant characteristics (LAI and biomass) 
were also measured using reference techniques at regular intervals along the crop 
seasons. 

The model for which the methods were tested is Mini STICS model  
(Makowski et al., 2004). These are the dynamic equations that indicate how each 
state variable evolves from one day to the next as a function of the current values 
of the state variables, of the explanatory variables, and of the parameters values. 
Encoding these equations over time allows one to eliminate the intermediate 
values of the state variables and relate the state variables at any time to the 
explanatory variables on each day up to that time. The model structure can be 
derived from the basic conservation laws, namely material and energy balances. 
However, the model involves several parameters that are usually not known, 
which include the radiation use efficiency which expresses the biomass produced 
per unit of intercepted radiation, the maximal value of the ratio of intercepted to 
incident radiation, the coefficient of extinction of radiation, etc. The model 
parameters are presented at Table 1. The parameter values were the ones 
determined in Makowski et al. (2004). 

 
Problem Formulation 

Based on the equations described in Makowski et al. (2004), the 
mathematical model LSM of the LAI and Soil Moisture is given by: 

 



 
 

                                 

𝐿𝐴𝐼(𝑡 − 1) = 𝑓1(𝐿𝐴𝐼(𝑡 − 1) + 𝜃)
𝐻𝑈𝑅1(𝑡) = 𝑓1(𝐻𝑈𝑅1(𝑡 − 1) + 𝜃)
𝐻𝑈𝑅2(𝑡) = 𝑓1(𝐻𝑈𝑅2(𝑡 − 1) + 𝜃)

        (16) 

where t is the time, f1-3 are the corresponding model functions, and θ is the vector 
of parameters driving the simulations (Table 1).  LAI is the leaf area index and 
HUR1 (resp. HUR2) is the volumetric water content of the layer 1 (resp. the layer 
2). Discretizing the model (16) using a sampling interval of 𝛥𝑡 (one day), it can be 
written as, 

  
𝐿𝐴𝐼𝑘 = [𝑔1(𝜃)]𝛥𝑡 + 𝐿𝐴𝐼𝑘−1 + 𝑤𝑘−1

1

𝐻𝑈𝑅1𝑘 = [𝑔2(𝜃)]𝛥𝑡 + 𝐻𝑈𝑅1𝑘−1 + 𝑤𝑘−1
2

𝐻𝑈𝑅2𝑘 = [𝑔3(𝜃)]𝛥𝑡 + 𝐻𝑈𝑅2𝑘−1 + 𝑤𝑘−1
3   (17) 

where 𝑤𝑗∈{1,…,3}
𝑗  is a process Gaussian noise with zero mean and known 

variance 𝜎𝛾𝑗
2 . Up to now, the model (17) assumes that the parameters θ are 

constant. These parameters are 𝐴𝐷𝐸𝑁𝑆, 𝐷𝐿𝐴𝐼𝑀𝐴𝑋, and 𝑃𝑆𝐼𝑆𝑇𝑈𝑅𝐺.  𝐴𝐷𝐸𝑁𝑆 is 
the parameter of compensation between stem number and plant density, 
𝐷𝐿𝐴𝐼𝑀𝐴𝑋 is the maximum rate of the setting up of  𝐿𝐴𝐼, and 𝑃𝑆𝐼𝑆𝑇𝑈𝑅𝐺 is the 
absolute value of the potential of the beginning of decrease in the cellular 
extension. If we are interested in estimating some (or all) of these parameters, the 
equations describing their evolution are also needed: 
 

1
11 −− γ+= kkk ADENSADENS  

2
11 −− γ+= kkk DLAIMAXDLAIMAX  

3
11 −− γ+= kkk PSISTURGPSISTURG    (18) 

 
where 𝛾𝑗∈{1,…,3}

𝑗  is a process Gaussian noise with zero mean and known 
variance 𝜎𝛾𝑗

2 . Combining (17) and (18), one obtains: 
 

Table 1. LSM model parameters and physical properties 
 

Name Meaning True 
value 

ADENS Parameter of compensation 
between stem number and 
plant density 

−0.8 

BDENS(plants.m−2) Maximum density above 
which there is competition 
between plants 

1.25 

CROIRAC(cm.degree − day−1) Growth rate of the root front 0.25 
DLAIMAX(m2.l.s.m−2.degreedays−1) Maximum rate of the setting 

up of LAI 
0.0078 

EXTIN Extinction coefficient of 0.9 



 
 

photosynthetic active 
radiation in the canopy 

KMAX Maximum crop coefficient 
for water requirements 

1.2 

LVOPT(cm.root.cm−3.s) Optimum root density 0.5 
PSISTO(bars) Absolute value of the 

potential of stomatal closing 
10 

PSISTURG(bars) Absolute value of the 
potential of the beginning of 
decrease in the cellular 
extension 

4 

RAY ON(cm) Average radius of roots 0.02 
TCMIN(◦C) Minimum temperature of 

growth 
6 

TCOPT(◦C) Optimum temperature of 
growth 

32 

ZPENTE(cm) Depth where the root density 
is 1/2 of the surface root 
density for the reference 
profile 

120 

ZPRLIM(cm) Maximum depth of the root 
profile for the reference 
profile 

150 

 

 
𝑓1 ∶  𝐿𝐴𝐼𝑘 = [𝑔1(𝜃𝑘−1)]𝛥𝑡 + 𝐿𝐴𝐼𝑘−1 + 𝑤𝑘−1

1

𝑓2 ∶ 𝐻𝑈𝑅1𝑘 = [𝑔2(𝜃𝑘−1)]𝛥𝑡 + 𝐻𝑈𝑅1𝑘−1 + 𝑤𝑘−1
2

𝑓3 ∶ 𝐻𝑈𝑅2𝑘 = [𝑔3(𝜃𝑘−1)]𝛥𝑡 + 𝐻𝑈𝑅2𝑘−1 + 𝑤𝑘−13

𝑓4 ∶ 𝐴𝐷𝐸𝑁𝑆𝑘 = 𝐴𝐷𝐸𝑁𝑆𝑘−1 + 𝛾𝑘−11

𝑓5 ∶∶ 𝐷𝐿𝐴𝐼𝑀𝐴𝑋𝑘 = 𝐷𝐿𝐴𝐼𝑀𝐴𝑋𝑘−1 + 𝛾𝑘−12

𝑓6 ∶ 𝑃𝑆𝐼𝑆𝑇𝑈𝑅𝐺𝑘 = 𝑃𝑆𝐼𝑆𝑇𝑈𝑅𝐺𝑘−1 + 𝛾𝑘−13

   (19) 

where 𝑓𝑘∈{1,…,6}  are some nonlinear functions and where  𝑤 = (𝑤1,𝑤2,𝑤3)𝑇 and  
𝛾 = (𝛾1,𝛾2, 𝛾3)𝑇 are respectively the measurement and process noise vector, 
which quantify randomness at both levels. In other words, we are forming the 
augmented state:  𝑧𝑘 = (𝑥𝑘,𝜃𝑘)𝑇 which is the vector that we wish to estimate. It 
can be given by a 6 by 1 matrix: 
 



 
 

   

𝑥𝑘(1, : )   → 𝐿𝐴𝐼𝑘
𝑥𝑘(2, : )   → 𝐻𝑈𝑅1𝑘
𝑥𝑘(3, : )   → 𝐻𝑈𝑅2𝑘
𝑥𝑘(4, : )   → 𝐴𝐷𝐸𝑁𝑆𝑘
𝑥𝑘(5, : )   → 𝐷𝐿𝐴𝐼𝑀𝐴𝑋𝑘
𝑥𝑘(6, : )   → 𝑃𝑆𝐼𝑆𝑇𝑈𝑅𝐺𝑘

     (21) 

                                                          
The idea here is that, if a dynamic model structure is available and if 

dynamic measurements of the state variables are available, the model parameters 
can be estimated using one of state estimation technique. State estimation is a 
system-engineering approach, in which the states (and sometimes the parameters) 
of a state space model can be estimated given time-series dynamic measurements 
of some of the state variables. In this work, the PF and VF will be used as state 
estimation technique. Their abilities to solve this nonlinear state estimation 
problem will be tested through different cases, which are summarized below. In 
all cases, it is assumed that three states (𝐿𝐴𝐼,𝐻𝑈𝑅1 and 𝐻𝑈𝑅2) are measured. 

i) Case 1: the three states (𝐿𝐴𝐼,𝐻𝑈𝑅1 and  𝐻𝑈𝑅2 ) along with the 
parameter 𝐴𝐷𝐸𝑁𝑆 be estimated. 

ii) Case 2: the three states (𝐿𝐴𝐼,𝐻𝑈𝑅1 and  𝐻𝑈𝑅2 ) along with the 
parameter 𝐴𝐷𝐸𝑁𝑆,  and  DLAIMAX  will be estimated. 

iii) Case 3: the three states (𝐿𝐴𝐼,𝐻𝑈𝑅1 and  𝐻𝑈𝑅2 ) along with the 
parameter 𝐴𝐷𝐸𝑁𝑆, DLAIMAX  and PSISTURG  will be estimated. 

 
Sampling data generation 

To go further in the research, data to run the model are necessary. To 
generate these original dynamic data, the model was first used to simulate the 
responses 𝐿𝐴𝐼𝑘 , 𝐻𝑈𝑅1𝑘, 𝐻𝑈𝑅2𝑘 as functions of time of the first recorded 
climatic variable of the crop season “2008-2009”. The sampling time used for 
discretization was 1 day. 

Moreover, to characterize the ability of the different approaches to 
estimate both at same time, the states and the parameters, we have chosen “true” 
parameter values (Table 1). The advantage of working by simulation rather than 
on real data is that the true parameter values are known. It is thus possible to 
calculate the quality of the estimated parameters and the predictive quality of the 
adjusted model for each method. The drawback is that the generality of the results 
is hard to know. The results may depend on the details of the model, on the way 
the data are generated and on the specific data that are used. 

The so obtained simulated states, which are assumed to be noise free, are 
then contaminated with zero mean Gaussian errors, i.e., the measurement noise 
𝑣𝑘−1~ N(0,σv2),  where σv2 = 0.1. 
 



 
 

 

Fig. 1. Simulated LSM data used in estimation: state variables (𝑳𝑨𝑰 leaf area 
index, 𝑯𝑼𝑹𝟏 volumetric water content of the layer 1; 𝑯𝑼𝑹𝟐 volumetric 
water content of the layer 2). 
 

SIMULATIONS RESULTS ANALYSIS 

In this section, we are interested in examining the effect of the number of 
estimated parameters on the estimation performances of PF and VF and in 
estimating the states and parameters of the LSM process model.  

State and parameter estimation results corresponding to case 1 and 3 and using 
PF and VF are shown in Fig. 2 to 5. Table 2 compare the estimation performances 
of PF and VF for case 1 in terms of RMSE for the three states 𝐿𝐴𝐼,𝐻𝑈𝑅1 and 
𝐻𝑈𝑅2 (with respect to the noise free data) and the mean of the estimated 
parameter 𝐷𝐿𝐴𝐼𝑀𝐴𝑋 at steady state. Tables 3, and 4 provide similar comparisons 
for cases 2 and 3, respectively, (i.e., estimating the three states and the parameters 
𝐴𝐷𝐸𝑁𝑆  and 𝐷𝐿𝐴𝐼𝑀𝐴𝑋 in case 2, and estimating the three states and the 
parameters 𝐴𝐷𝐸𝑁𝑆, 𝐷𝐿𝐴𝐼𝑀𝐴𝑋 and 𝑃𝑆𝐼𝑆𝑇𝑈𝑅𝐺 in case 3).  

Comparing the estimation performances of PF and VF, it has been observed, 
as expected, that the root mean square errors (RMSE) of estimated states increase 
for both estimation techniques as the number of estimated states and parameters 
increases.  

 
 
 
 

Table 2. Root mean square errors (RMSE) of estimated states and mean of 
estimated parameters - case 1 
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Technique 

 
RMSE 

Mean at steady 
state 

 𝐿𝐴𝐼 𝐻𝑈𝑅1 𝐻𝑈𝑅2 𝐴𝐷𝐸𝑁𝑆 
PF 0.0365  0.0376 0.0257 −0.8 
VF 0.0198 0.0191  0.0126 −0.8 

 
Table 3. Root mean square errors (RMSE) of estimated states and mean of 
estimated parameters – case 2 
 

 
Technique 

 
RMSE 

 
Mean at steady state 

 𝐿𝐴𝐼 𝐻𝑈𝑅1 𝐻𝑈𝑅2 𝐴𝐷𝐸𝑁𝑆 𝐷𝐿𝐴𝐼𝑀𝐴𝑋 
PF 0.0790 0.0808 0.0533 −0.8 0.0078 
VF 0.0378 0.0389 0.0245 −0.8 0.0078 

  
Table 4.  Root mean square errors (RMSE) of estimated states and mean of 
estimated parameters - case 3 

 
 

Technique 
 

RMSE 
 

Mean at steady state 
 𝐿𝐴𝐼 𝐻𝑈𝑅1 𝐻𝑈𝑅2 𝐴𝐷𝐸𝑁𝑆 𝐷𝐿𝐴𝐼𝑀𝐴𝑋 𝑃𝑆𝐼𝑆𝑇𝑈𝑅𝐺 

PF 0.1146 0.1186 0.0774 −0.8 0.0078 did not 
converge 

VF 0.0608 0.0586 0.0369 −0.8 0.0078 0.0078 
 
VF shows improved estimation performance over PF in estimating the states 

and parameters in all cases. The RMSE of the estimated states (with respect to the 
noise free data) is higher using PF than VF. The parameters convergence to the 
true value is obtained more quickly with VF than PF. Furthermore, in case 3, 
where three parameters (𝐴𝐷𝐸𝑁𝑆,  𝐷𝐿𝐴𝐼𝑀𝐴𝑋 and 𝑃𝑆𝐼𝑆𝑇𝑈𝑅𝐺) had to be 
estimated, the estimate of 𝑃𝑆𝐼𝑆𝑇𝑈𝑅𝐺 did not converge to the true value while a 
convergence was quickly obtained with VF. 

 
 



 
 

 

Fig. 2. Estimation using PF - Case 1: Estimation of LAI, HUR1, HUR2; 
ADENS. 

 

 

Fig. 3. Estimation using PF - Case 3: Estimation of LAI, HUR1, HUR2; 
ADENS, DLAIMAX, PSISTURG. 
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Fig. 4. Estimation using VF - Case 1: Estimation of LAI, HUR1, HUR2; 
ADENS. 

 

Fig. 5. Estimation using VF - Case 3: Estimation of LAI, HUR1, HUR2; 
ADENS, DLAIMAX, PSISTURG. 
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CONCLUSIONS 

A Bayesian filtering was applied on a nonlinear dynamic crop model, 
considered as a system assumed to progress according to a probabilistic state 
space model. The aim was to predict simultaneously three state variates (Leaf 
Area Index and soil moisture of two soil horizons) and several parameters. It has 
been shown that the variational Bayesian filter approach guarantees observer 
convergence. Furthermore, the proposed algorithm has a low computation 
complexity since it is directly based on the Gaussian predictive distribution of the 
state variable. In addition, when the number of states and parameters to estimate 
increases, variational Bayesian filtering also offers a benefit because it does not 
require us to calculate Jacobian matrices. In addition, the convergence speed of 
states and parameters estimation can be adjusted independently. 

This conclusion could be established as we compared our method with the 
centralized particle filtering. Detailed case studies presented in this paper 
demonstrate the significantly improved performance of our approach for highly 
nonlinear estimation problems. 
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