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ABSTRACT 
 

Leaf nitrogen concentration (LNC), a good indicator of nitrogen status in crop, is 
of special significance to diagnose nutrient stress and guide nitrogen fertilization 
in fields. Due to its non-destructive and quick advantages, hyperspectral remote 
sensing plays a unique role in detecting LNC in crop. Many studies have reported 
the successes of monitoring LNC with spectral techniques for main crops such as 
wheat, maize and soybean, but there are few researches for barley, especially 
malting barley, a kind of crop very demanding for nitrogen fertilization. In the 
study, canopy reflectance spectra (between 350 and 1050nm) from 38 typical 
barley fields were measured as well as the corresponding LNC in Hailar Nongken 
(farming cultivate), China's Inner Mongolia Autonomous Region in July, 2010. 
Some existing spectral indices considered to be better candidates for evaluating 
LNC were tested to estimate LNC in barley. In addition, the optimal combination 
(OC) method was tried to extract sensitive bands responding to leaf nitrogen in 
barley, and expected to develop a combination model for improving the precision 
of LNC estimates. The results showed that a regression relationship of LNC to 
spectral indices NPCI and PRI could well describe the dynamic changes of LNC 
in barley with R2 of 0.67 and 0.65, RMSEs of 0.58 and 0.59, respectively. A 
combined model of integrating the first-order spectral derivatives of 
496,499,689,797, and 882nm based on OC method exhibited the good 
performance with R2 of 0.82, RMSE of 0.50 for LNC in barley. The high fitting 
revealed an excellent agreement with ground-measured truth, and indicated that 
hyperspectral reflectance and OC method have a good potential for assessing 
nitrogen concentration in barley leaves. 
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INTRODUCTION 
 

Nitrogen (N) is the most demanding nutrient elements for crop development, 
and plays a profoundly important role in improving crop photosynthesis and 
promoting productivity (Scheromm et al., 1992; Guo et al., 2005). N fertilizer 
requirements of crop vary temporally and spatially (Mamo et al., 2003). However, 
farmers usually fertilize crop with more N supply to ensure higher yield, 
regardless of N requirements change of crop. So excessive N supply may bring 



about not only the overgrowth of crop population, but also the environment 
pollution in the farmlands, and this will greatly influence the sustainable 
development of farming agriculture. Thus it is still worthy of attention how to 
make nitrogen fertilization strategies to scientifically fertilize crops at right 
physiological stage and time with the opportune amount. Leaf nitrogen 
concentration (LNC), as a good indicator of N status in crop, can be applied to 
diagnose and evaluate N nutrient status. Therefore, it is very significant to 
effectively estimate LNC for assessing N nutrient stress, making N supply 
strategy (Feng et al., 2008) 

Hyperspectral remote sensing technology with using a large number of 
narrow wavebands has been proved to be a powerful means for in-situ 
measurements of many crop biochemical constituents such as pigments content, 
leaf water content and LNC (Cho and Skidmore, 2006; Houborg et al., 2009; 
Moran et al., 1994 ) Some existing researches based on the reflectance of dried 
and ground leaves, had demonstrated that N sensitive absorption wavebands were 
located in SWIR (shortwave infrared) region, such as at 1510nm, 1940nm, 
2060nm, and 2180nm, etc (Curran, 1989; Fourty et al., 1996). Nevertheless, 
spectral diagnoses of N nutrient status mainly focus on fresh crop plants in fields, 
but not dry crop. Reflectance spectra of fresh vegetation in SWIR have the two 
strong water absorption wavebands near 1450nm and 1940nm, which mask the 
above N absorption bands mentioned (Kokaly and Clark, 1999). Therefore, 
reflectance spectra data in visible and near-infrared region are often used to assess 
LNC in crop. The optimal combination (OC) principle is a method how to 
determine the weight of each individual model participating in the combination 
(Bates and Granger, 1969; Wallis, 2011), and widely applied in economic 
forecasting field, but there are few reports in the application of N spectral 
detection. In this study, OC are tested to select the N sensitive wavebands to 
construct the model of estimating LNC in barley. 

Nitrogen is one of the most important components of chlorophyll, and there 
are close relationships between nitrogen and chlorophyll (Yoder and 
Pettigrew-Crosby, 1995; Cho and Skidmore, 2006; Botha et al., 2006), so 
chlorophyll can be used as an indicator of N status. Many spectral features of 
chlorophyll in visible are designed as N indicators of crop such as wheat, rice, 
corn and cotton (Blackmer et al., 1996; Feng et al., 2008; Takebe et al., 1990; 
Tarpley et al., 2000). However, there are few reports on spectral estimation of 
LNC in barley. Barley, especially malting barley, is an important source material 
for beer production. And the key indicator of malting barley quality is the grain 
protein content that must be kept within a reasonable range. Thus for barley beer 
production, it is an urgent need to quickly evaluate N status in barley fields to 
enhance N fertilizer management and adjust grain quality. So it is very important 
to develop an effective method of rapidly and non-destructively assessing LNC in 
barley based on hyperspectral measurement. 

The objectives of this study are to (1) to evaluate the analysis capability of 
some typical spectral indices for LNC estimates in barley; (2) to assess the 
performance of OC method how to select the sensitive wavebands to establishing 
the combination models to effectively estimate LNC. 
 

DATA AND METHODs 



 
Study area and data acquisition 

 
The study area is situated in Hailar Nongken (farming cultivate), China's 

Inner Mongolia Autonomous Region, where barley is mainly used for beer 
production as malting barley and the large planting areas account for about 
one-third of total areas of malting barley in China. In this study, thirty-eight 
barley fields with each the unanimous field management in Hailar Nongken were 
selected to collect the experimental data. 

Data acquisition included canopy spectral reflectance measurements in 
fields and the determination of LNC indoors. An ASD spectrometer (FieldSpec 
Pro VNIR, Anaytical Spectral Devices, Inc., USA) that operates in a spectral 
range from 350nm to 1050nm was utilized to measure canopy spectral 
reflectance in the 38 fields. Spectral measurement with ASD in each field was 
done by averaging 20 times to get reliable mean estimates for reflectance. When 
measuring canopy spectral reflectance, twenty representative barley plants from 
the same field were collected for determination of LNC. All green leaves as 
separated from the plants indoors were de-enzymed at 105℃, then oven-dried at 
80℃ to constant weight for chemical analysis. LNC (g 100 g-1, %) 
measurements from the dried leaf samples were performed by using an elemental 
analyzer (vario MACRO cube, Elementar Analysensysteme GmbH, Germany). 
Data collection was conducted between 8th and 10th July, 2010. 

 
Methods 

 
preprocessing of hyperspectral data 
 

The following preprocessing of hyperspectral data was done by using the 
methods of Pu (2009). First, the spectral curves were truncated below 400nm due 
to extreme noise out of the range. Next, the raw spectral band width was 
interpolated to 1nm. So, about 650 bands remain. And then, these spectral curves 
were smoothed by a simple average over blocks of five neighbouring bands. 
Finally, the normalization of the spectral curves for constant area was conducted 
by dividing the mean reflectance for that curve, as the following equation (1). All 
of the following analyses in the paper used the normalized spectral data.  
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Where Ri is the normalized reflectance, ρi is the smoothed reflectance before 
normalized, and k represents the total bands of the spectral reflectance.  
 
spectral indices 
 

In this study, some existing spectral indices considered to be good 
candidates for evaluating N status were selected to test their capabilities of 
estimating LNC in barley (Table 1). Among these indices, ones aiming at N 
estimation such as MCARI/MTVI2, REP-le, DCNI, and RIldB, are tested, and the 
other as the better indicators of assessing pigments, especially chlorophyll, such 
as PRI, SDr/SDb, TCARI/OSAVI, mND705, MCARI, and NPCI are also utilized to 



evaluate N status in barley. 
 
Table 1. Spectral indices used in this study 
 

Spectral indices Formulas References 

MCARI/MTVI2 

MCARI:[(R700-R670)-0.2(R700-R550)](R700/R
670) 
MTVI2:1.5[1.2(R800-R550)-2.5(R670-R550)]/s
qrt[(2R800+1)2-(6R800-5sqrt(R670))-0.5]  

Eitel et al., 2007 

REP-le Red edge position based on linear 
extrapolation method Cho et al., 2006 

DCNI (R720-R700)/(R700-R670)/(R720-R670+0.03) Chen et al., 2010 
PRI (R570-R531)/(R570-R531) Gamon et al., 1992 
RIldB R735/R720 Gupta et al., 2003 

SDr/SDb 

Sum of 1st derivative within the red 
edge(680~780 nm) divided by sum of 1st 
derivative within the blue edge(490~530 
nm)) 

Gong et al., 2002; 
Wang et al., 2003 

TCARI/OSAVI 
TCARI: 
3[(R700-R670)-0.2(R700-R550)(R700/R670)] 
OSAVI: 1.16(R800-R670)/(R800+R670+0.16) 

Haboudane et al., 
2002 

mND705 (R750-R705)/(R750+R705-2R445) Sims & Gamon, 
2002 

MCARI [(R700-R670)-0.2(R700-R550)](R700/R670) Daughtry et al., 
2000 

NPCI (R680-R430)/(R680+R430) Peñuelas et al., 
1994 

 
 
Optimal combination principle and algorithm 
 

Optimal combination (OC) is one method that computationally gives 
optimal weights of different individual models settling the same problem to form 
one combination model with the least errors (Tang, 1991; Wallis, 2011), and its 
principle is as the following. 

Given that different N  models computing the same object based on n  
samples are viewed as individual models, the combination model integrating N  
models can be formulated as the following: 
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where, M is the combination model, im  the individual models, and ik  are 
weights of N  individual models and meet the constraint conditions that each k  
must be positive and their sum be equal to 1. 

If set ije  as the error for j sample with i individual model, so the error jE  
of combination model for j sample can be expressed by the following: 
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Here, jO  is the observed value, jM estimated value of combination model 
for j sample. 

In order to get ik , OC usually takes jE  on as independent variable of the 
cost function to construct the mathematic expression as 1 2( , , , )= … iE minE k k k , and 
here minE as cost function may be MAES (minimum absolute error sum), or 
MESS (minimum error square sum), or the other objective function. Considering 
the computational convenience, MAES is selected as the cost function of OC, and 
the linear programming algorithm is utilized to calculate the optimal weights of 
the combination model in this study, the detailed algorithm can see Yang et al. 
(1998). 
 

RESULT AND ANALYSIS 
 

Relationship of LNC to spectral indices 
 

After extracted from spectral reflectance measured from 38 barley fields, 
the ten spectral indices in Table 1 were related with LNC to find the sensitive 
indices for LNC in barley. Linear, logarithm, and exponential model were used to 
make fit, and the best fitting with highest R2 and lowest RMSE were expressed, 
Table 2 showed the results of regression analysis between spectral indices and 
LNC in barley. It could be seen that the two indices, PRI and NPCI, had the better 
performance of estimating LNC in barley, with R2 of 0.65 and 0.67, RMSE of 
0.59 and 0.58. Fig. 1 exhibited the plotted relationships of LNC to the two 
spectral indices  

 
Table 2. Results of regression analysis between spectral indices and LNC in 
barley (n=38).  
 
Spectral indices R2 RMSE Spectral indices R2 RMSE 
MCARI/MTVI2 0.02  0.98  SDr/SDb 0.56  0.66  
REP-le# 0.62  0.62  TCARI/OSAVI 0.50  0.70  
DCNI 0.57  0.65  mND705 0.62  0.62 
PRI 0.65  0.59  MCARI 0.10  0.94  
RIldB 0.58  0.64  NPCI 0.67  0.58  
 

   



Fig. 1. Regression relationships of LNC to the two spectral indices NPCI and 
PRI (n=38). 

 
 

LNC estimates based on optimal combination algorithm 
 

Considering that spectral derivative has the advantages of weakening soil 
noise and highlighting the inflexion points on a spectral curve, the first order 
derivatives of spectrum were used to assess LNC in barley. At the same time, the 
OC method based on linear programming algorithm was tried for estimating LNC. 
The processing steps of adopting OC were as the following: (1) calculated 1st 
spectral derivatives; (2) made linear fit between spectral derivatives from each 
wavelength and LNC in barley; (3) took every linear fit of all wavelength as 
individual models; (4) use OC to calculate the optimal weights to form the 
combination model for estimating LNC.  

Table 3 showed the optimal weights of all individual LNC models with 1st 
spectral derivatives from different wavelengths based on OC, it could be found 
that within the range from 400nm to 1050nm, the only five wavelength, namely, 
496nm, 499nm, 689nm, 797nm and 882nm, were given weights while all of the 
other zero weights, which indicated that except for the five wavelengths, all 
models of the other wavelengths with the 1st  spectral derivatives provided the 
redundant or repetitive information on N status in barley.  

 
Table 3. Optimal weights of all individual LNC models with 1st spectral 
derivatives from different wavelengths based on OC. 

 
Models with 1st spectral derivatives  
from different wavelengths  Weights R2 RMSE 

496nm 0.139  0.64 0.60 
499nm 0.140  0.61 0.62 
689nm 0.113  0.60 0.63 
797nm 0.289  0.52 0.69 
882nm 0.319  0.59 0.64 
All of the other wavebands 0 -- -- 
Combination model -- 0.82 0.50 

 
From Table 3, the combination model had the highest R2 of 0.82, and the 

lowest REMS of 0.50 by comparison with those five nonzero-weight individual 
models, and could be expressed as the equation (4). Fig. 2 showed the comparison 
between observed and estimated LNC with the combination model that integrated 
the individual fitting models using 1st spectral derivatives from 496nm, 499nm, 
689nm, 797nm, and 882nm, respectively 

1 496 2 499 3 689

4 797 5 882

(%) 0.139* ( ) 0.14* ( ) 0.113* ( )
0.289* ( ) 0.319* ( )

LNC M fd M fd M fd
M fd M fd
= + +

+ +
    (4) 

where M1, M2,……, and M5 were denoted as the five models of the above 
nonzero-weight wavelengths, respectively (see Table 3), fd was the 1st spectral 
derivative of the corresponding wavelength.  



 

 
Fig. 2. Comparison between observed and estimated LNC with the 
combination model that integrates the individual fitting models using 1st 
spectral derivatives from 496nm, 499nm, 689nm, 797nm, and 882nm, 
respectively.  
 

CONCLUSION 
 

Barley, especially malting barley, requires the demanding nitrogen (N) 
fertilization management. As a good indicator of N status, LNC can be used to 
well monitor N nutrient in crop, so it is very significant to effectively estimate 
LNC for N fertilizer strategies in barley fields. This study analyzed the 
capabilities of the ten spectral indices considered to be good candidates of 
evaluating N status, and assess the performance of OC for estimating LNC in 
barley. The analysis shows that the two spectral indices, NPCI and PRI, can well 
describe the change of LNC in barley, and the OC method can markedly improve 
the precision of LNC estimates in barley. It is indicated that hyperspectral 
reflectance and the OC method have a good potential for assessing nitrogen 
concentration in barley leaves. 
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