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ABSTRACT 
 
Corn plant spacing and population information is important in assessing 

planter performance and making decisions on field operations. The objective in 
this study was to investigate the potential of using laser line-scan sensing 
technique to locate corn plant stalks on-the-go. A mobile test platform equipped 
with a commercial laser line scanner, an encoder, a DAQ card, a PC and a RGB 
camera was constructed. Data was collected for two 10m corn rows at their 
middle growth stages - V8 and V10 - in Lake Carl Blackwell Agronomy Farm of 
Oklahoma State University, and was processed later in lab with algorithms 
developed to recognize and locate stalks. A 4% of mean false negative error and a 
29% of mean false positive error at growth stage V8, a 6.7% of mean false 
positive error and a 12.7% mean false positive error at growth stage V10 were 
achieved. The system setup and data processing algorithms in this study can be 
integrated into the variable-rate-spray system to help improving real-time, high 
spatial resolution variable rate application and increasing the nitrogen use 
efficiency. 
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INTRODUCTION 
 

Information of corn plant spacing variation is important in making decisions 
on field operations and assessing planter performance. It has been demonstrated 
that the variation in corn plant spacing affects the yield production. Every inch 
increase in standard deviation of plant spacing could lead to two bushels decrease 
yield per acre (Nielsen, 2005). In another aspect, nitrogen use efficiency in world 
cereal crop production is low (Raun and Johnson, 1999). Most of the time, 
excessive nitrogen has been applied because of the lack of information to set 
realistic yield goal based on the in-field variability (Teal et al., 2006). Approaches 
to automatically obtain plant spacing variations or plant population are useful in 
solving these problems.  

Many researches have been done so far in this field which can be categorized 
as airborne and ground-based (Dworak et al., 2011). Most of airborne remote 
sensing approaches use hyperspectral or multispectral analysis (Huang et al., 2010; 
Thorp et al., 2008; Jacob et al. 2002). The ground-based sensing approaches have 



 
 

been used for obtaining detailed crop and soil information. They can be combined 
with other in-field operations such as planting, spraying or harvesting. In terms of 
plant population or spacing measurement, ground-based approaches can be 
categorized as intrusive or mechanical methods and non-intrusive methods.  

Mechanical methods to measure corn plant population usually use the resistant 
force of stalks on spring loaded arms or gravity pendulum to count the number of 
stalks (Birrell and Sudduth, 1995; Heege 2004). Some of them have already been 
commercialized at combine harvesters. Non-intrusive methods are more suitable 
for sensing corn population at early and middle growth stages. Some of them are 
based on capacitive sensing: Nichols (2000) invented a moisture detector sensor 
installed on the combine to count harvested stalks; Li et al. (2009) developed a 
capacitance-based biomass proximity sensor to count corn stalks during 
harvesting. Most of the other methods are based on optical sensing techniques.  

Several researches have been done using image-based optical sensing. 
Shrestha & Steward (2003, 2005) developed and improved a machine vision-
based corn plant population sensing system. Algorithms were developed to 
process the video segmented images to count corn plants, estimate plant location 
and intra-row spacing. They resulted with a 5.4% coefficient of variation for the 
standard error in population estimate in 2003, and 6.2% RMSE in 2005. Tang & 
Tian (2008a, 2008b) developed a real-time crop row image reconstruction and 
plant identification system for automatic emerged corn plant spacing 
measurement. They achieved a RMSE of 1.7cm.  

Range sensing techniques are another category of optical-based sensing 
methods applied in crop parameter measurement. Wangler et al. (1994) fixed a 
laser sensor to a mobile sprayer to detect the presence of the foliage and to control 
a sprayer on selective spraying. Wei and Salyani (2004, 2005) designed and tested 
a laser system to quantify foliage density of citrus trees. Saeys et al. (2008) 
estimated the wheat stand density by measuring the variations in the laser 
penetration depth. Luck et al. (2008) used an infra-red range sensor to count 
plants in field. They concluded an error of population estimation between 0.7% 
and 4.4%. They also indicated that the main error source was the leave 
interference. Few researches were found about the corn stalk location sensing 
using range sensing techniques.  

The objectives of this research were to:  
i) Use the rapid line-scan technique to develop a system to realize non-

invasive corn stalk locating; 
ii) Test the system in corn field at their middle growth stages – V8 and 

V10; 
iii) Develop data processing algorithms to determine corn stalk locations 

and evaluate the system performance by error calculation. 
 

MATERIALS AND METHODS 
 

System Setup and Principle 
 

The key part of this system was a laser line scanner (SICK LMS291, SICK, 
Germany) which profiles its surrounding based on distance measurement in a 



 
 

continuous line scanning with 100° field of view and 0.5° resolution. The sensor 
output was read and converted from polar coordinates to Cartesian coordinates in 
a control program developed in LabVIEW and then saved as MS Excel files. 
Mounted close to ground on a trolley, the laser scanner was viewing almost 
horizontally at the bottom section of corn stalks – about two inches above plant 
roots – while the trolley was pushed along the alley between corn rows (Fig. 1). 
That two-inch correlated with the earlier work done by plant scientists (Kelly, 
2010). Due to the inconvenience of mounting and driving the sensor such close to 
the ground, the sensor was actually mounted higher and had a 20° angle down to 
keep its actual view on plant stalks was about two inches above plant roots. 
Multiple neighbor stalk sections within a row were usually showed up in one scan. 
The number of shown-up stalk sections depended on the distance between the 
sensor and plants, as well as how far neighbor plants apart. A shaft encoder was 
mounted at one rear wheel to get where each scan was taken regarding to the start 
point. The same control program mentioned earlier also interfaced a DAQ card 
(USB 6008, National Instruments, TX) connecting to this shaft encoder, and 
saved its readings corresponding to the sensor scan data.  

 

 
(a) 

 
(b) 

Fig. 1. System setup: (a) actual trolley with sensor; (b) illustration of top view 
of the system setup. 
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Field test was conducted from June to July, 2011 in the Lake Carl Blackwell 

Farm in Stillwater, OK. Two 10m rows, in total 100 corn plants, were picked out 
in the field and sensed at two growth stages – V8 and V10. Same trolley setup 
used in the lab test was adopted here. A normal RGB camera was mounted next to 
the laser scanner on the trolley beam to take the video tapping during each trial 
which was used later as part of the ground truth. Three replications were 
performed for each row at each sensing growth stage. The horizontal distance 
between the sensor and the corn row was about 35cm (14 inches) and the sensing 
plane on the stalks was kept in between 5cm (2 inches) to 10cm (4 inches) above 
the plant roots. Manual measurements of stalk diameters were taken for all 100 
plants at each sensing growth stage as the major ground truth data.  
 

Data Processing Algorithms 
 

All Excel files collected from the field were processed later in lab using 
MATLAB®, though our ultimate goal in the future is to realize on-line processing. 
In this study, individual scan was first converted from the file and encoder 
readings were corrected according to the manual measured distance. Then each 
scan was processed to eliminate noise followed by a two-stage clustering 
procedure to automatically recognize stalk sections. Locations of each recognized 
stalk were obtained in each scan. Finally, all scans in a trial were matched with 
each other to generate a whole non-overlap data set for all plants recognized by 
the algorithm and the location and stalk diameter of each recognized plant was 
calculated. 
 
Pre-processing 

 
Individual scan and its corresponding encoder reading were extracted from 

Excel files. The time-consuming work in this procedure was to correct encoder 
distance readings between the 1st and the 50th plants in each trial based on the 
manually measured ground truth so that both of them could have same start and 
end locations. As described in the system setup, the quality of encoder readings 
depended on the rotation of the wheel the encoder roller attached. If in some 
moment that particular wheel did not rotate while the other wheels were still 
rotating forward, or the trolley was moving backward to overcome obstacles, 
encoder readings messed up then. This error was natural and hard to be avoided 
under the field experiment setup in this research. One way to partially correct it 
was to stretch or compact encoder readings evenly along the entire sensing section 
for each trial, so that the encoder readings and the ground truth would have an 
equal total length in between the 1st and the 50th plants as what it was in the 
ground truth.  
 
Filtering 

 
After pre-processing, data was prepared in the form of individual scan and 

was ready for advanced processing (Fig. 2 (a)). Each scan was in a local Cartesian 



 
 

coordinate and the origin was where the sensor was at the moment this scan was 
done (Fig. 2 (b)). The distance between the origin and the stalk sections was kept 
within 30 cm to 50cm due to the relative constant distance between the sensor and 
corn row during the experiment. We eliminated data out of this range which 
represents ground data points far from the sensor or leaves too close to the sensor. 
By doing this, less data was input to the next processing procedure. 
 
Clustering 

 
The objective of the clustering procedure was to automatically recognize and 

locate corn stalk sections within a scan. The algorithm had two clustering stages: 
the primary clustering and the secondary clustering.  

In the primary clustering, data points were clustered based on the distance 
between each two of them. It started from a random data point, found its 
neighbors within a certain range and assigned them to a same group; each 
neighbor data point would find its neighbors which had not been visited yet and 
include them into its group. If a data point only had one neighbor and that 
neighbor had already been visited, it was at the edge of the cluster and the 
expansion of that path ended there. The expansion of one cluster stopped when all 
its members had no more unvisited neighbors, and the algorithm moved to next 
potential cluster then. Once all data points were visited and assigned to groups, 
the algorithm checked the size of each cluster. Only those clusters had enough 
members were kept while others were treated as noise and eliminated.  

One thing needs to be pointed out here is that the distance the algorithm used 
to cluster varied based on the distance a data point away from the origin. This was 
because the further two consecutive data points are away from the origin, the 
further they are separated due to the diversity of laser beams. 

In the secondary clustering, clustering results from the primary clustering 
were refined. Clusters were combined if they were radially close to each other 
while not too far away in their Euclidean distance. By doing this, we partially 
avoided multiple counts for one stalk section. Fig. 2 (c), (d) and (e) shows the 
results after the two clustering stages for three scans in a trial. Locations of all 
clusters in each scan were stored for the following registration processing.  

Stalk diameter was estimated by the size of its corresponding cluster. Due to 
the radial sensing pattern of the laser scanner, the size of each cluster was 
calculated along the perpendicular direction of the laser beam through the cluster 
center. However, the stalk diameter estimation was not the main focus in this 
paper.  
 
Registration/Matching between Scans 

 
The advantage of using laser scanner under the experiment setup in this study 

was that we could get multiple scans for the same stalk but from different points 
of view, so that we had a better chance to correctly recognize the stalk and 
recover more field information. A stalk usually showed up in about thirty scans 
without considering the leave interference which means, in the best situation, we 
could have thirty different perspectives of view for one stalk. It is not only helpful 



 
 

in getting rid of leave interference for stalk location sensing, but also helpful for 
stalk diameter sensing since the corn stalk is an oval instead of a perfect round 
shape. This advantage would never be made use of unless successive scans are 
matched with each other, or registration between scans is achieved. In this 
algorithm, successive scans were matched based on the difference of their encoder 
readings. The algorithm used the stalk locations in current scan and the difference 
of encoder readings in current scan and previous scan to calculate approximate 
stalk locations previous scan. Then it looked for stalk section cluster around that 
calculated location within a certain range. If a stalk showed in current scan but did 
not in some previous scans due to the leave interference, the algorithm would 
search back up to twenty scans to find corresponding stalk. Once a corresponding 
stalk was found, the stalk in the current scan was assigned as the same number 
and its location in current scan was also stored. If no corresponding stalk was 
found, then this stalk in current scan was a stalk newly coming into the field of 
view if this was a latest stalk the algorithm observed; otherwise it was a noise 
cluster most likely corresponding to leaves. Sub figures (c) and (d) in Fig. 2 are 
two successive scans – scan #128 and #129 in replication 1 of plant ID #1~#50 at 
V10 growth stage, sub figure (e) is the scan #138 in the same trial. The algorithm 
recognized there were four stalks in sub figure (d) which corresponded to the 
same four stalks in sub figure (c). It also recognized three out of the four stalks in 
sub figure (e) corresponding to the right three stalks in (d) but also a new show-up 
stalk at the very right. The most left stalk in (d) had moved out of the field of 
view of (d). 

After implementing the registration for all scans, the algorithm output 
estimated number of stalks as well as locations and stalk diameters for each stalk 
in all related scans. The interquartile data was averaged and used as the final 
results of location for each recognized stalk.  
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(c)                                                                                      (d) 

 
(e) 

Fig. 2. Examples of data processing result at each step: (a) raw data of scan 
#128 of one trial; (b) result of scan #128 after filtering; (c) result of scan #128 
after clustering; (d) result of scan #129 after clustering; (e) result of scan 
#138 after clustering. 
 

RESULTS and DISCUSSIONS 
 

The data processing results are shown in table 1 in which (a) shows the result 
of stalk #1 to #50 and (b) shows the result of stalk #51 to #100. Both sub tables 
summarize the information of each replication in each growth stage: the soil 
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moisture, the sensing plane height, the quality of encoder readings, quality of 
sensor data, false negative error, false positive error and percentage of sensor 
measured location within 5cm to 10cm of ground truth location. The purpose to 
investigate the quality of encoder readings and sensor data here with the data 
processing results was to discuss the source of error in this experiment.  

 

 
Fig. 3. Sensor measured and ground truth stalk locations of replication 1 of 
row 1 at V10. 

 
In the column of quality of encoder readings, ‘fine’ means the trolley did not 

have significant backward movement during the trip, there were insignificant 
missing counts and the encoder readings were increased almost linearly; ‘ok’ 
means the trolley had some backward movement or there were some missing 
counts, but did not affect significantly to the encoder readings and the encoder 
readings were acceptable for being used in sensor data processing; ‘not good’ 
means the backward movement or missing counts significantly affected the 
encoder readings for being used in the sensor data processing. In the last case, the 
whole data set was ignored which was the case for growth stage V10 for stalk #51 
to #100. All sensor data was good except one replication under growth stage V10 
for stalk #1 to #50 lost the logging of some scans but the whole data set was still 
acceptable.  

The false negative error in the table corresponds to stalks which were not 
recognized by the algorithm but should be actually there; while the false positive 
error corresponds to objects mistakenly recognized as stalks by the algorithm but 
were actually leaves or other type of noise. Figure 3 shows an example of sensor 
measured stalk locations and ground truth stalk locations as well as the false 
negative error and false positive error. A 4% of mean false negative error (mean 
of row 1: 0%, mean of row 2: 8%) and a 29% of mean false positive error (mean 
of row 1: 24%, mean of row 2: 34%) were achieved for both row sections at V8. 
A 6.7% of mean false positive error and a 12.7% mean false positive error was 
achieved for row 1 at V10.  
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From the table we can see that, at growth stage V8, false positive errors tend 
to be larger than false negative errors for both row sections (row 1 had a mean 
false positive error at 24% and a mean false negative error at 0; row 2 had a mean 
false positive error at 34% and a mean false negative error at 8); at growth stage 
V10, false positive errors tend to decrease while false negative errors tend to 
increase (row 1 had a mean false positive error at 6% and a mean false negative 
error at 6%). This is mainly because of the change of leave interference. At 
growth stage V10, most of the leaves on the bottom of stalks (2 to 3 inches above 
the roots) are fully dehydrated and lay on the stalk. Those leaves prevent the 
sensor to see the stalk clearly so we tend to have more false negative errors. This 
problem was even severe due to the drought in Oklahoma last summer. Sensing at 
various heights would help reduce this problem in the future. While at growth 
stage V8, most of leaves on the bottom of the stalk are still vital and stand out of 
the stalk, so they would not prevent the sensor to see the stalks, but would cheat 
the sensor to treat them as stalk objects. Improvement on the stalk recognition and 
scan registration algorithms is needed to reduce such error in the future. 
 
Table 1. Results of stalk location estimation. (a) results of row 1: stalk #1~#50; 
(b) results of row 2: stalk #51~#100. 
Row 1: Stalk #1 ~ #50 
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(a) 
Row 2: Stalk #51 ~ #100 
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The absolute error of stalk location measurement was also calculated for each 
correctly recognized stalk by getting the absolute difference between the sensor 



 
 

measured location and the ground truth location. The last columns in both sub 
tables show the percentage of sensor measured locations within 5cm of ground 
truth locations. A 91% was achieved for both row sections at V8 and an 87% was 
achieved for row 1 at V10. Combining this result with the false negative errors 
discussed earlier, we can achieve an 87.4% of on-target spray at V8 and an 81.2% 
of on-target spray at V10. 
 

CONCLUSIONS 
 

A laser scanner based system sensing at bottom sections of corn stalks as well 
as corresponding data processing algorithms was developed to locate corn stalks 
in their middle growth stages in field. This research demonstrated that:  

• Using laser scanner to sense corn stalks from different point of view on-
the-go is a feasible method for identifying and locating stalks. The result 
after data processing showed a 4% of mean false negative error and a 29% 
of mean false positive error at growth stage V8, a 6.7% of mean false 
positive error and a 12.7% mean false positive error at growth stage V10. 

• The stalk identifying and locating results could be improved by having 
better quality encoder readings by modifying the encoder mounting 
mechanism, sensing at different height to avoid dead leave interference 
and improving data processing algorithms.  

• More information can be obtained using this method such as stalk 
diameter estimation.  
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