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ABSTRACT 

 
Crop-based active canopy sensors and soil-based management zones (MZ) are 
currently being studied as tools to direct in-season variable-rate N application. 
Some have suggested the integration of these tools as a more robust decision tool 
for guiding spatially variable N rates. The objectives of this study were to identify 
(1) soil variables useful for MZ delineation and (2) determine if MZ could be 
useful in identifying field areas with differential crop response to N and hence be 
effective in guiding spatially variable N applications in addition to crop canopy
 
 
 



sensing. Eight N rates (0 to 274 kg ha-1 in 39 kg ha-1 increments) were applied in 
replicated small plots across an irrigated cornfield in central Nebraska in 2007. 
Soil variables evaluated for MZ delineation included maps of apparent soil 
electrical conductivity (ECa), soil optical reflectance, and landscape topography. 
Crop response to N was determined via active sensor assessments of in-season 
canopy reflectance (chlorophyll index; CI590) and grain yield measurements. The 
relationships between soil and crop response variables were evaluated, and 
selected soil variables were used to delineate MZ. Crop response had the highest 
correlation to ECa and relative elevation (Elevrel). Economic analysis showed 
potential benefits to N management using soil-based MZ compared to the current 
producer N rate for this field. Further economic benefits could potentially be 
achieved by integrating soil-based MZ and in-season sensor-based N application. 
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INTRODUCTION 
 

Current nitrogen (N) management practices have contributed to low nitrogen 
use efficiency (NUE), estimated to be as low as 30-40% for cereal crops such as 
corn (Raun and Johnson, 1999; Cassman et al., 2002). Contributing factors to low 
NUE abound, but can ultimately be summarized in 3 main points, as stated by 
Shanahan et al. (2008): (1) poor synchrony between soil N supply and crop 
demand, (2) uniform application rates of fertilizer N to spatially variable 
landscapes, and (3) failure to account for temporally variable influences on crop 
N need. For NUE to increase above 30-40%, innovative plant- and soil-based N 
management strategies are needed to address these factors that contribute to low 
NUE. 

Plant-based methods to increase NUE have included use of the SPAD 
chlorophyll meter. Varvel et al. (1997, 2007) found that “spoon-feeding” N 
fertilizer based on leaf greenness measurements using a SPAD chlorophyll meter 
could be used to reduce N applications while maintaining near optimum yields. 
However, extending this tool and concept to whole-field management is 
problematic since it is difficult to collect sufficient data using a hand-held device 
to manage large fields (Schepers et al., 1995). As a more practical alternative to 
the SPAD chlorophyll meter for use in large scale applications, active crop 
canopy sensors have been studied as a remote sensing tool to accurately assess in-
season plant N status and direct spatially-variable N applications (Solari et al., 
2008; Raun et al., 2002). Active canopy sensors generate modulated light in the 
visible (400-700 nm) and near-infrared (NIR) (700-1000 nm) regions of the 
electromagnetic spectrum. Solari et al. (2008) found that active canopy sensors 
were strongly correlated to SPAD measurements, and could be used to assess 
canopy N content and direct in-season N application. Solari (2006) developed an 
algorithm to convert active sensor canopy reflectance measurements at two 
preselected wavelengths into N application rates for corn. However, he also stated 



that more research was needed to evaluate whether the algorithm could be used in 
a variety of soil and climatic conditions. 

Soil-based methods to increase NUE have included the concept of 
management zones (MZ). The concept of MZ has been studied extensively for the 
past 20 years as an alternative to uniform N management. Management zones are 
defined as sub-regions of a field with homogeneous attributes in landscape and 
soil conditions resulting in similar regions of yield-limiting factors or yield 
potential (Doerge, 1999), and consequently with similar input-use efficiency or 
potential environmental impact. A variety of data layers have been used to 
delineate MZ within fields. These have included, but are not limited to: soil 
survey maps (Franzen et al., 2002); topography (Kravchenko and Bullock, 2000); 
remote sensing and farmer experience (Fleming et al., 2000); apparent soil 
electrical conductivity (ECa) (Kitchen et al, 2005); yield maps (Flowers et al., 
2005); soil color (Hornung et al., 2006); and soil brightness, elevation, and ECa 
(Schepers et al., 2004). 

Delineating fields into MZ has produced mixed results, characterizing 
homogeneous production areas well in some years, but not in others. For example, 
Schepers et al. (2004) found that MZ based on soil brightness, elevation, and 
electrical conductivity appropriately characterized spatial yield patterns in three 
out of five seasons. However, spatial yield patterns changed significantly in the 
wettest and driest years in their dataset, and did not correspond to the delineated 
MZ, suggesting that the static soil-based MZ concept alone would not be adequate 
for variable application of crop inputs like N across temporal variability. They 
further suggested that the combination of MZ with a crop-based in-season remote 
sensing system could produce a more efficient method to apply crop inputs such 
as N. A responsive in-season N application approach combining MZ and crop-
based remote sensing was suggested again by Shanahan et al. (2008) as a possible 
strategy to increase efficiency of crop inputs such as N. Therefore, the objectives 
of this study were to identify (1) soil variables that might be useful for MZ 
delineation and (2) determine if MZ could be valuable in identifying field areas 
with differential crop response to N and hence be effective in guiding spatially 
variable N applications. 

 
MATERIALS AND METHODS 

 
Research Field and Experimental Treatments 

 
This study was conducted during the 2007 growing season on a strip-tilled, 

sprinkler irrigated producer cornfield in central Nebraska. The field consisted of 3 
soil series: Crete silt loam (Pachic Argiustoll), Hastings silt loam (Udic 
Argiustoll), and Hastings silty clay loam (Udic Arigiustoll). The silt loams had 
minimal slope (0 to 1%) while the silty clay loams had slopes (3 to 11%) with 
moderate topsoil erosion. The research field provided a range of within-field 
spatial variability in topography and soil conditions to address the study 
objectives. 

The producer planted the field on May 5 using Pioneer 34R67 seeded at 
79040 seeds ha-1 on 0.76 m row spacing. Nitrogen treatments for this study 
consisted of 8 rates ranging from 0 to 274 kg ha-1 in 39 kg ha-1 increments. Plots 



were arranged in a 3 x 3 randomized complete block design (RCBD) with the 8 N 
rates randomized around a central check plot (0 kg ha-1) (Fig. 1). The stationary 
check plot was used to assess the soil’s ability to support crop growth, through 
mineralized N, at equal distances across the landscape (45.6 m apart). Individual 
plots consisted of eight rows by 15.2 m in length. Sixteen treatment blocks were 
located end-to-end in the field, traversing the different soil series within the field. 
These N treatments were applied after seeding as 28% UAN (urea-ammonium-
nitrate) solution. 

 

 
Fig 1. Experimental layout of small plots arranged in randomized complete 
blocks extending the length of the field. The inset shows one block of 
treatments. 
 



Soil Data Layers 
 

The spatial data layers collected included soil optical reflectance (visible and 
NIR reflectance bands from an active sensor), apparent electrical conductivity 
(ECa), relative elevation, and slope. All spatial data were georeferenced with a 
Global Positioning System (GPS) receiver. Spatial coordinates for all data were 
converted using Universal Transverse Mercator (UTM) Zone 14N (NAD-83 
Datum) projection. Spatial data analysis was conducted using ArcMap 9.2 (ESRI, 
Redlands, CA). 

Soil ECa was mapped prior to planting using a Geonics EM38 (Geonics Ltd, 
Mississauga, Ontario, Canada). The EM38 instrument provides a measure of 
ground conductivity and magnetic susceptibility at integrated soil depths of 0 to 
0.75 m (horizontal dipole mode; ECsh) and 0 to 1.5 m (vertical dipole mode; 
ECdp). To collect readings, the EM38 was fastened into a plastic/fiberglass sled 
pulled behind an all terrain vehicle (ATV). A Trimble AgGPS114 receiver 
(Trimble Navigation Ltd, Sunnyvale, CA) was mounted next to the sensor to 
record geographic coordinates as the ATV made parallel passes ~15 m apart from 
each other through the field. 

Soil optical reflectance was assessed at the time of planting using the Holland 
Scientific ACS-210 Crop Circle active sensor (Holland Scientific, Inc., Lincoln, 
NE). This sensor generates modulated light in the visible and NIR regions of the 
electromagnetic spectrum and measures reflectance with visible (590 ± 5.5 nm, 
VISsoil) and NIR detectors (880 ± 10 nm, NIRsoil). To acquire sensor readings, the 
sensor and data logger were mounted on the front of an ATV ~0.6 m above the 
soil surface. The sensor was positioned over the soil surface in the nadir view, 
producing a footprint of approximately 8 by 40 cm, with the long dimension of 
this footprint oriented parallel to the direction of travel. The sensor footprint was 
positioned over the planted cornrow to minimize crop residue in the sensor field-
of-view as the ATV followed behind the planter. Because soil reflectance is 
influenced by surface soil moisture content, a distance ~90 m was maintained 
between the ATV and the planter. This separation distance between the planter 
and ATV resulted in data collection < 1 min. after soil disturbance, providing a 
moderate amount of soil water content and soil color differentiation at the time of 
data collection. The distance between consecutive ATV passes across the field 
was equal to the planter width (24 rows). A Garmin 18 (Garmin International, 
Inc., Olathe, KS) GPS receiver with an update rate of 5 Hz was mounted next to 
the sensor. Sensor readings were collected at 10 Hz while the ATV traveled ~10 
km hr-1, resulting in ~0.56 m between consecutive data points. Linear 
interpolation was applied to assign unique geographic coordinates to each 
recorded measurement. 

Elevation data was also recorded at the same time as collection of soil optical 
reflectance readings. The Garmin 18 receiver had claimed horizontal accuracy 
below 3 m. Although this did not provide a high level of elevation accuracy, 
general elevation trends were observed. Relative elevation (Elevrel) was calculated 
by subtracting the minimum elevation within the field from all elevation data 
points. Slope was calculated from elevation data using the spatial analysis tool in 
ArcMap 9.2. 



To obtain values of each soil layer for each small plot, inverse-distance 
weighting (IDW) was used to provide an interpolated surface for each data layer 
(VISsoil, NIRsoil, simple ratio (SRsoil), Elevrel, Slope, ECdp, and ECsh) at a spatial 
resolution of ~0.5 m. To reduce the border effect between plot N applications, 
data from each soil layer were extracted from a 2-m radius area-of-interest (AOI) 
around the center of each plot using zonal statistics in ArcMap 9.2. The 2-m 
radius for each plot was inspected and adjusted slightly if any anomalies could be 
identified (poor crop stand, pivot tracks, etc.). 
 

Crop Response Data Layers 
 

Canopy Reflectance Sensing 
 

When the crop reached V10 growth stage, canopy reflectance measurements 
were collected from each plot with the sensor used for soil optical reflectance 
mapping. To distinguish soil optical reflectance from canopy optical reflectance 
in this discussion, plant readings will be referred to as VIS590 and NIR880.  Sensor 
reflectance in the VIS590 and NIR880 was used to calculate chlorophyll index 
(CI590) values according to Gitelson et al. (2005) using the following equation: 

 
     (1) 

 
Sensor-based CI590 values were used in lieu of the more traditional NDVI because 
CI590 has been found to be more sensitive in assessing canopy N status than NDVI 
(Solari et al., 2008). 

To acquire sensor readings, two sensors were mounted on the front of an 
eight-row high-clearance vehicle approximately 0.8 to 1.5 m above the crop 
canopy. The sensors were positioned over rows 2 and 7 in the nadir view. Based 
on positioning, each sensor produced a footprint of approximately 0.1 by 0.5 m, 
with the long dimension of this footprint oriented perpendicular to the row 
direction. This sensor position was determined to be optimal for assessing canopy 
N status by Solari (2006). Before field operation, each sensor was calibrated by 
the manufacturer using a proprietary universal 20% reflectance panel with the 
sensor placed in the nadir position above the panel. The output from each sensor 
included pseudo-reflectance values for the two parts of the spectrum needed for 
CI590 calculation. 

A Garmin 18 GPS receiver with an update rate of 5 Hz was mounted in the 
center on top of the vehicle cab and offset 3.5 m behind the sensor boom. Canopy 
reflectance measurements were collected at 10 Hz while the vehicle traveled at a 
ground speed ~8 km hr-1. Linear interpolation was applied to assign unique 
geographic coordinates to each recorded measurement. Sensor readings were 
filtered to exclude soil readings from the crop dataset. This was done by assuming 
that all data points which fell below average CIsoil + 2SD calculated from the soil 
color dataset were soil measurements, and were removed from the in-season crop 
sensing dataset. Remaining sensor data points were assumed to be plant 
measurements. Sensor readings for each plot AOI were extracted using zonal 
statistics in ArcMap 9.2.   



 
Yield Data 
 

At physiological maturity, two 3-m lengths of adjacent rows (6 m total per 
plot) were selected for hand-harvest from the center of each plot. Grain samples 
were oven dried, weighed, and shelled. Grain moisture was measured using a 
DICKEY-john moisture tester (DICKEY-john Corp., Auburn, IL), and harvested 
weight was adjusted to a standard moisture of 155 g kg-1. 

Yield response to N rate models were fit to each treatment block and used to 
identify potential outliers in the dataset that required further inspection. Based on 
previous research by Cerrato and Blackmer (1990) and Scharf et al. (2005), a 
quadratic-plateau function was used to describe corn yield response to N rate for 
data of each treatment block using Proc NLIN in SAS 9.1 (SAS Institute Inc., 
Cary, NC). The stationary check plot within each block was not used in this part 
of the analysis unless the randomized check plot was not representative of its 
location in the field (i.e. error in treatment applications, location of pivot track, 
etc.). Goodness of fit for each model was evaluated according to methods 
described by Kitchen et al. (2010) and Scharf et al. (2005). Spatial location and 
yield response models were evaluated for each treatment block, and plots with 
obvious anomalies were excluded from further analysis. 
 

Data Analysis and Zone Delineation 
 

Pearson correlation analysis was conducted to explore the relationships 
between the measured soil and crop variables. The crop variables used were 
Yield, Relative Yield (Yieldrel), ΔYield, CI590, and partial factor productivity 
(PFP). Yieldrel was calculated within each replication by dividing each yield by 
the yield obtained from the plot receiving the highest N rate (274 kg ha-1). ΔYield 
was calculated within each replication by subtracting the check plot (no N 
applied) yield from yield when N was applied. PFP (kg grain/kg N applied) was 
used in place of other calculations of NUE because it provides an integrative 
index that quantifies total economic output relative to utilization of all nutrient 
resources in the system, including indigenous soil nutrients and nutrients from 
applied inputs (Cassman et al., 1996). Next, the relationships between check plot 
yields, CI590, and the different soil variables were explored. This approach was 
taken to remove the confounding effects of N application on measured variables, 
and better determine associations between variation in soil attributes and variation 
in crop response variables. The two soil variables with the highest significant 
correlation to both check plot yields and CI590 were used as input variables for 
clustering in Management Zone Analyst 1.0.1 (USDA-ARS and University of 
Missouri, Columbia, MO) (Fridgen et al., 2004). Once soil variables were 
selected, all plots were input into MZA for classification. Additionally, to increase 
the total number of points for clustering, and to increase the overall spatial area 
for clustering, data points located in an adjacent N study were also used as inputs 
into MZA. Software default values were used for both the measure of similarity 
(Euclidean distance) and the fuzziness exponent (1.30). The Normalized 
Classification Entropy (NCE) and Fuzziness Performance Index (FPI) were 
calculated by MZA as post classification analysis to determine the appropriate 



number of zones within each field. The optimum number of classes is when both 
NCE and FPI are minimized, representing the least membership sharing (FPI) or 
greatest amount of organization (NCE) from the clustering process (Fridgen et al., 
2004).  
 

Zone Validation 
 

After clustering in MZA, zones were evaluated to determine whether 
classification based on soil variables was related to differences in in-season CI590 
and yield response to N rate. Because canopy reflectance (expressed as CI590) and 
yield response to N rate are inputs to the current in-season active canopy sensor 
algorithm developed at the University of Nebraska (Solari, 2006), these two 
variables were used to test zonal differences in the field. 

To evaluate zone delineation using CI590 and yield response to N rate, 
treatment blocks within each field were disregarded and plots were grouped 
according to N rate within each zone. Although the number of plots for each N 
rate varied within each zone, plot CI590 and yield values were averaged for each N 
rate within each zone. This resulted in 8 total data points within a zone for both 
CI590 and yield, to which quadratic-plateau models were fit. An F-test was 
performed to determine whether the models for CI590 and yield response to N rate 
for each zone were statistically different. 

Parameters b and c from the quadratic-plateau models were used to calculate 
the economic optimal N rate (EONR) for each zone. EONR was determined based 
on a fertilizer to grain ratio of 7, where corn grain price was $0.158 kg-1 ($4 bu-1) 
and N fertilizer cost was $1.10 kg-1 ($0.50 lb-1). EONR was calculated based on 
the equation: 

EONR = [b - ($1.10/$0.158)]/2c   (2) 
 
where b and c were the linear and quadratic coefficients of the quadratic-plateau 
response function, and where b > 0 and c < 0 (Scharf et al., 2005). EONR was 
constrained to never exceed 274 kg N ha-1, the highest N application rate. 
 

RESULTS AND DISCUSSION 
 

Selection of Soil Variables for MZA 

To determine soil variables that might be useful for delineating field 
variability into MZ and if MZ could in turn be useful in identifying field areas 
with differential crop response to N, the relationships between the soil variables 
and crop response variables (CI590 and Yield) for the 0-N check plots were first 
explored. Because the current active sensor algorithm incorporates yield response 
to N and in-season CI590 measurements (Solari, 2006), soil-based MZ would need 
to identify both in-season spatial patterns in canopy reflectance (CI590) and end of 
season patterns in crop yield. This strategy was taken to remove the confounding 
effect N application has on the soil-plant system. This strategy appeared to be a 
useful method to explore how the soil variables can influence the crop in-season 
and at the end of the growing season (Table 1). 
 



Table 1. Correlation of soil variables to check plot yield and in-season CI590. 
Crop 

Parameter VISsoil NIRsoil SRsoil ECdp ECsh Elevrel Slope 
CI590 -.77*** -.74*** .76*** -.70*** -.76*** .75*** -.26 
Yield -.63*** -.63*** .58*** -.74*** -.74*** .65*** -.52** 

**Statistical significance at P < 0.01 
***Statistical significance at P < 0.001 

 
The two variables with the highest significant correlation to CI590 and Yield 

were selected for use in MZA clustering. This analysis indicated that ECsh showed 
the strongest correlation to both CI590 and Yield. It should also be noted in this 
analysis there was strong correlation between Elevrel and CI590 as well as Yield. 
The strong positive correlation is related to the silt loam content of the soil. 
Higher positions in the landscape for this field corresponded to higher OM and 
more productive soils while lower areas in the landscape corresponded to 
drainage ways. These landscape positions translated to optimal growing 
conditions in higher elevation areas of this field, resulting in low in-season crop 
stress and high yields. On the other hand, drainage ways could potentially have 
higher crop stress during the growing season due to denitrification, leading to 
lower crop yields.  
 

Management Zone Delineation 
 
Results from MZA were initially evaluated using the two indices (FPI and 

NCE) calculated by MZA, as previously described. FPI and NCE indicated that 
optimal clustering occurred with two MZ in the field (data not shown). A zonal 
classification map is presented in Fig. 2. Zone 1 consisted of darker, more 
productive soils while Zone 2 consisted of lighter, less productive areas. The 
darker Zone 1 areas corresponded to productive upland positions in the landscape. 
Zone 2 areas were associated with eroded slopes and drainage ways where soil 
fertility is potentially lower and conditions are not suitable for optimal crop 
growth in most growing seasons (Table 2). 

 
Management Zone Validation 

 
Chlorophyll Index 
 

After using MZA to conduct zone classification, the next step was to 
determine if crop response to N rate (sensor determined CI590) was affected by 
MZ classification. For soil-based MZ to be used in conjunction with in-season 
active sensor based N management, it is essential for the zones to properly 
identify areas within a field of different levels of N stress. In past research, CI590 
has been shown to be a good measure of in-season crop N status (Solari et al., 
2008), and was therefore used for zone validation. 

 



 
Fig. 2. Zones 1 and 2 resulting from MZA clustering of soil variables.  Data 
points and soil series are overlaid on a bare soil CIR image. 
 
 
 
Table 2. Soil chemical properties for Zones 1 and 2. Soil samples were 
collected from the 0 to 20 cm depth prior to planting from a 0.7 ha offset grid 
within the field.  An F-test was used to test statistical difference between MZ. 

MZ n pH Bray-P OM 
1 11 5.21** 22.9* 35.5** 
2 5 6.07** 60.4* 30.2** 

*Statistical significance at P < 0.05 
**Statistical significance at P < 0.01 



A comparison of zonal CI590 values is presented in Fig. 3a. The Zone 1 CI590 
model was statistically different from the Zone 2 model (p < 0.05). Zone 1 was 
located in higher productivity areas of the field which did not exhibit in-season N 
stress to the extent of Zone 2 areas. These results indicate that the identification of 
appropriate soil variables to develop MZ within a field can characterize in-season 
variability in CI590 (i.e. identify different areas of N stress within a field). 

Although the identification of different areas of N stress within a field is 
essential for in-season sensor-based N application, the current University of 
Nebraska active sensor algorithm evaluates crop N stress using a sufficiency 
index (SI) calculated as: 

    (3)

where CItarget is the CI590 value of an N stressed area and CIhigh N reference is the CI590 
value of a non-N limiting area. N rate was calculated according to the following 
parametric equation based on the V11 growth stage algorithm proposed by Solari 
(2006): 

   (4) 

When zonal SI590 is used instead of zonal CI590 values, N stress within a zone is 
normalized and the difference between zones is minimized (Fig. 3b). Zonal SI590 
were not statistically different (p < 0.05); however, N rates required to achieve 
high SI590 values differed substantially between the two zones. These results 
indicate that soil-based MZ are able to delineate different areas of N stress within 
this field. Results also show the current sensor-based algorithm accounts for 
different areas of N stress by using a normalized crop N stress measurement 
(SI590) in place of CI590. 
 
Yield 

 
Yield response to N rate was statistically different between Zones 1 and 2 

(Fig. 3c). Zone 2 consisted of soils on eroded slopes where yield potential was 
lower than in other non-eroded areas of the field. EONR differed by 72 kg ha-1 
between Zones 1 and 2. These results indicate that the soil-based MZ were able to 
appropriately classify yield response to N rate areas within this field. Integrating 
these zonal yield response models with an in-season sensor-based system could 
potentially improve the efficiency of the current University of Nebraska sensor-
based algorithm. 
 

Economic Considerations 
 

An economic analysis was performed using the 11.6 ha study area within the 
field. If the current producer N application rate for this field is used (258 kg ha-1), 
the area designated as zones 1 and 2 are calculated, and a N fertilizer cost of $1.10 
kg-1 is assumed, we can calculate the potential savings or loss resulting from 
applying zone specific uniform N rates compared to the current producer N 



  
Fig. 3. Crop response to N rate for Zones 1 and 2. Crop response variables 
included chlorophyll index (a; CI590), sufficiency index (b; SI590), and yield 
(c). EONR for Zones 1 and 2 is indicated by the corresponding symbol on the 
x-axis in part c. 



application rate. These assumptions result in a total N savings for N application to 
our study area of $146 ha-1. Extrapolated to a typical Nebraska pivot area of ~57 
ha, the total savings is $8322. The substantial N savings measured suggests there 
is potential benefit to N application according to soil-based MZ. The benefit of 
site-specific management in this field could potentially be increased further 
through the integration of active canopy sensor-based variable-rate N application 
adjusted to account for within-field MZ, as suggested by Shanahan et al. (2008) 
and Scharf et al. (2005). Further research in this area is warranted. 

Additionally, results from this study showed that further modifications to the 
current sensor-based algorithm could potentially increase the N application 
efficiency. For example, the current active canopy sensor algorithm is based on 
maximum yield being attained at ~180 kg N ha-1 in-season (Solari, 2006). Results 
showed that N rate at maximum yield differed between zones by 68 kg ha-1. As an 
initial algorithm modification, N rate at which maximum yield is attained could 
potentially be changed based upon the zonal yield response to N rate measured in 
this study.  
 

CONCLUSIONS 
 

In this study it was found that soil properties could be used to delineate 
within-field MZ that identified spatial variability in crop in-season response to N 
rate (CI590) and crop yield. In this analysis, MZ delineated using a combination of 
ECa and Elevrel identified significantly different areas of CI590 and yield response 
to N rate. An economic analysis showed potential benefit to spatially variable N 
applications using soil-based MZ compared to field-uniform applied N. Economic 
benefits were found for this predominantly silt loam field having substantial 
topographical relief and eroded slopes. Further economic benefits could 
potentially be achieved by integrating soil-based MZ and in-season sensor-based 
N application. 
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