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ABSTRACT 
 
     Monitoring the growth of crops and estimating their yield allows the farmer to 
better manage the resources after the harvest. The existing methods for 
monitoring the growth of crops depend on remote sensing data or soil and weather 
information, which are prone to error due to adverse climatic conditions or 
insufficient information.  
 
     Here we present an alternative approach, where the growth of the crop 
(tomato) is monitored from images captured in an open field. For this, the 
tomatoes are identified in the image using a segmentation procedure and their size 
is measured. This is a challenging task because of severe occlusions and poor 
contrast in the images. In order to increase the robustness of the segmentation 
procedure (based on active contours) and simplify the size estimation, we 
approximate the tomatoes as spheres in the 3D space, hence as ellipses in the 
image space. This model enables us to integrate a priori information about the 
shape of the object to be segmented and to avoid a complete reconstruction of the 
3D scene. The automatic segmentation was evaluated by comparing the results 
with manual segmentation. For the cases with a reasonable amount of occlusion 
(less than 30%), good results were obtained, with an average relative error of 
6.46% (expressed as a percentage of the tomato size). The metric reconstruction 
has also been evaluated. It was observed that the error on the estimated tomato 
radius was less than 5% for 91% of the cases. Finally, the complete system was 
tested. The size of the tomatoes was correctly estimated in 80% of the cases. In 
addition, preliminary studies have showed that the actual volume of tomatoes can 
be estimated from the calculated sphere radius, using a correction factor. 
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INTRODUCTION 
 
     Monitoring the growth of crops and estimating the yield and the date of harvest 
are valuable information when farming open field tomatoes. It allows better 
management of resources (such as storage requirements, transportation) after the 
harvest. It also enables the farmer to better negotiate terms and conditions for crop 
insurance. Monitoring growth during tomato’s early stages is also interesting to 
assess plant stress or abnormal development. 

     One of the existing methods to estimate the yield uses remote sensing data 
(vegetation indices). However, the quality of the acquired data may decrease due 
to adverse climatic conditions (clouds, etc.) [Prasad et al., 2006, Mkhabela et al, 
2011]. Growth modeling is another method that uses and combines information 
about the cultivated crop variety, soil and weather, in order to model the crop 
growth and compute a theoretical estimate of the yield [Zhao and Pei, 2013]. 
However, this method considers an ideal case with no infected plants. Finally, 
very few works address the problem of crop monitoring from images. For 
example, Aggelopoulou and Stajnko process images of apple orchards 
[Aggelopoulou et al, 2011, Stajnko and Cmelik, 2005]. However, these 
approaches are limited to a controlled environment where complex scenarios such 
as occlusion are not considered. For example, in one of the proposed methods 
[Aggelopoulou et al, 2011], the observed scene was modified (using a black cloth 
placed behind the tree) in order to simplify the image processing task.  

     In this work, we present a different approach to monitor the growth of 
tomatoes using images acquired in an open field during the entire agriculture 
season while keeping the cost as low as possible. For this, two cameras (left and 
right) were installed and images were acquired at regular intervals (Figure 1). The 
entire image processing system is made up of two main parts: first we identify the 
tomatoes using a segmentation procedure, and then we estimate their size, from 
both right and left images, by applying a metric reconstruction scheme. The yield 
of the field can be estimated from this information.  

     

(a) Left image    (b) Right image 
Figure 1. Images of the tomatoes cultivated in an open field. 

 



     Note that this work is a part of a larger collaborative project, MCUBE, where 
the multimedia processing capabilities are integrated into a classical machine to 
machine (M2M) system, allowing the user to remotely monitor the field.  

 
CHALLENGES 

 
     One of the challenges of the system results from occlusions: most of the 
tomatoes are partially hidden by other tomatoes and/or leaves (Figure 2). 
Moreover color information is not of much use, because all tomatoes have the 
same color as the leaves during most of agricultural season time, except at the end 
of the maturation. In some images a shadow, created by the leaves or the tomato 
itself, can be observed. As a result, a portion of the contour is not apparent (Figure 
2). This results in an ambiguity on the actual position of the contour. The second 
main challenge concerns the metric reconstruction from the pairs of images 
captured by the two cameras. This task requires extracting pairs of points, one in 
each image, that correspond to the same point in the 3D space. This matching 
process is difficult, given the complexity of the scene. 
 

PROPOSED SYSTEM 
 

     In order to overcome the difficulties mentioned above, we propose to introduce 
a priori shape and temporal information throughout our system.  

     Shape information: We propose first to assume that a tomato can be 
approximated by a sphere in the 3D space. Using the properties of projective 
geometry, one can easily demonstrate that the image of a sphere is an ellipse 
[Hartley and Zisserman, 2004]. 

Figure 3 shows the contour generator Γ of a sphere Qr of center XC: this is the 
circle of same center and same radius that lies in the plane Π  orthogonal to the 
line joining XC and the camera center !. This circle projects into an ellipse of 
center !! in the image plane. This a priori shape information is incorporated in the 
segmentation procedure thus increasing its robustness with respect to occlusion. 
Moreover, the spherical hypothesis enables us to simplify dramatically the 
procedure for size estimation, which can be deduced from the estimated radius of 
the sphere. This eliminates the need for a full 3D reconstruction of the scene.  

 

 



                  

Figure 2. Occlusions due to leaves and branches (left and center), shadowing 
effect observed in the lower part of the contour (right). 
 
     Temporal information: There is little tomato growth during a given day. 
Thus only two images per day are studied (one for each camera taken at the same 
time in the day) creating a sequence of images for a particular tomato. We 
performed the manual segmentation of five tomatoes (elliptic approximation) and 
studied the evolution of the ellipse parameters along the time axis. For instance, 
Figure 4 shows the evolution of the major axis length of the five tomatoes during 
the entire agriculture season. It can be observed that there is little growth between 
two consecutive days. Moreover, it has also been observed that there is little 
movement of the tomato between two consecutive days. However, this movement 
is random and very difficult to predict especially in case of strong wind and rain. 
This temporal information is also incorporated in the segmentation step by 
considering those ellipses whose parameters lie within an acceptable range 
knowing the segmentation validated in the previous image. 
 

 

Figure 3. Image of a sphere. 



 
    ! 
Figure 4.!Evolution of the length of the major axis of manually segmented 
ellipses obtained on five selected sequences (S = 1, 2, 3, 7, 8).  

 
     Active contour model: The segmentation procedure is based on an active 
contour model [Kass et al, 1988, Xu et al, 2000] with shape constraint. This 
model deforms the contour iteratively from its initial position towards the edges 
of the object by minimizing an energy functional.  
     The total energy functional associated with a contour !! is usually modeled as 
the sum of three energy terms: the internal energy!!!"#, the image energy !!" and 
the external energy !!"#: 

!!"#$% ! = !!"# ! + !!" ! + !!"# !  

The internal energy term controls the physical properties (stiffness, elasticity) of 
the evolving contour. The image energy is derived from image data and drives the 
contour towards strong gradients in the image. A priori knowledge about the 
object to be segmented is included in the external energy term. In our work, we 
propose to constrain the evolution of the contour so that it remains close to a 
reference ellipse.  

     Our model relies on a parametric representation of the curves, since ellipses 
are easily represented in this way. Let us denote by !! ! = !!!(!)!!", !" 0,2! , 
the reference ellipse represented in polar coordinates, with origin at its center. A 
point !(!) lying on the active contour can be defined in the same way as 

! ! = !(!)!!" 

We propose to define the total energy with elliptic shape prior as:!

!! !, !! = ! !
2 !!(!) !

!!

!
!" + !!" ! ! !!" !" + !2 ! ! − !!(!) !

!!

!

!!

!
d!!

In this equation, the first term represents the internal energy while the second term 
represents the image energy, calculated from the diffusion of the gradient vectors 
[Xu and Prince, 1998]. The last term (!! ! ! − !!(!) !!")!!

!  can be viewed as 
the mean square error between the evolving contour and the reference ellipse. 

!!!! − !!
!!  



Thus, its minimization ensures that the active contour remains close to the 
reference ellipse. 

     The minimization of the energy functional is performed through an iterative 
process, the reference shape !! !  being regularly updated from points extracted 
from the evolving contour ! ! . 
 

SEGMENTATION ALGORITHM 
 

     Method: We consider here a sequence of images acquired from the left 
camera; the same processing is applied for images given by the right camera. 
Given the challenges of the system, we assume that the segmentation in image ! 
has been validated by an operator, before segmenting the tomatoes in the 
(! + 1)!! image. Indeed, this validation task is not heavy and enables us to rely on 
the ellipse parameters obtained in the previous image to find the new ones, 
through regularization in time and space. The segmentation procedure is 
described in detail in [Verma et al, 2014]. A brief overview of the method is 
presented below.  

     Since tomatoes move between two consecutive images, we first start by 
updating the position of the tomato in the (! + 1)!! image. The segmentation 
procedure is based on the active contour model presented above, which requires 
to be initialized. This initial contour is computed in two steps: first several 
candidate ellipses are determined from gradient information through the 
RANSAC algorithm. Then additional region information is extracted in order to 
select one ellipse among these estimates as the initial contour. The active contour 
with shape constraint is then applied. Finally, four different ellipse estimates are 
computed (!""!!,!!""!!,!""!!,!""!!), based on point selection rules that aim at 
extracting the points of the final curve that actually lie on non-occluded parts of 
the tomato boundary. The operator only has to select one estimate as the final 
segmentation. Note that we also compute the region of potential occlusion using 
region information, and modified the active contour model so that the effect of 
occlusion is minimized during the evolution of the active contour. 

     Although the image processing algorithms used in our segmentation procedure 
are classical ones, the main originality of the approach results from the 
combination of three types of information: gradient information, region 
information and prior information regarding the shape and size evolution of 
tomatoes. 

     Results: The cameras were installed in open fields of tomatoes, capturing a 
delimited region (Figure 1). The same setup was used for three agricultural 
seasons (April-August, 2011, 2012 and 2013). The vegetation was very different 
in the three cases, although the variety of the cultivated tomatoes was the same, 
because of different climatic conditions. We studied 21 tomatoes, covering 
different sites and different seasons, thus ensuring variability.  

!!!!!In order to perform a quantitative evaluation of the proposed approach, we 
compared the segmentations obtained with our algorithm with manual 



segmentations (approximated by ellipses). Let us assume that the manual 
segmentation ! is an ellipse representing the tomato, and that the automatic 
segmentation is represented by a set of equally-spaced points ! = !! ,!! ,! =
1, 2,… ,!! . The mean distance !!"#$(!,!) between the two contours ! and ! 
is defined as: 

!!"#$(!,!) =
1
!!

!! (!! ,!! ,!)
!!

!!!
 

where !! (!! ,!! ,!) is the Euclidean distance between !! ,!!  and the ellipse 
!. In order to better interpret the results, we express the measured error as a 
percentage of the tomato size. Let us denote by !! , !! the lengths of the semi-
major and semi-minor axes in the !!! image (given by the manual segmentation). 
The normalized mean distance error is defined by: 

!!"#$%! = !!"#$!

!! 100  with !! = !!!!!
!  

     An evaluation of the segmentation procedure on the entire image data set 
would be meaningless, given the heterogeneity of the image quality especially in 
terms of occlusion degree. Therefore, the influence of the amount of occlusion on 
the estimated radius was studied beforehand, considering the complete system 
applied on the ideal case of a spherical object. Using this information, the image 
dataset was divided into three categories, depending on the amount of occlusion. 
An image belongs to category 1 if the percentage of occlusion is less than 30%, to 
category 2 if the percentage of occlusion is between 30% and 50%, and to 
category 3 if the percentage of occlusion is greater than 50%. 
 
     Table 1 shows the mean and standard deviation of !!"#$% for the 21 tomatoes 
that have been followed up. In this table, only the images of category 1 have been 
considered and results are given for the fourth approximation output by the 
algorithm, denoted by !""!!. It is worth noting the low mean and lower standard 
deviation in most cases, which demonstrates both the accuracy and the robustness 
of our algorithm (Figure 5).  
 
     However, a slightly higher distance measure was observed in some images. 
The imprecision of the obtained contour is mainly due to blurring or shadows, that 
result in a strong ambiguity on the actual position of the tomato boundary (Figure 
6). Moreover, for the images acquired during the agricultural season 2013 
(sequences S = 12,..., 21), the sizes of tomatoes were comparatively smaller than 
that of agricultural seasons 2011 and 2012. Since the error measures !!"#$% are 
normalized by the size of the tomato (!!), higher values are generally observed 
for the images of these sequences. For example, Figure 7 shows the obtained 
segmentation !""!! on the 3!" image of sequence S = 17. The distance measure 
normalized by the size of the tomato is !!"#$% = 9.89%. However, the distance 
measure expressed in pixels is not so important (!!"#$= 2 pixels).  



                                             
     (a) (!!"#$% != 0.94%)       (b) (!!"#$% = 3.05%) 
Figure 5. Automatic segmentation (!""!") (red) along with manual 
segmentation (cyan) for two images of category 1.  
 
 

                                         
        (a)!!(!!"#$% != 3.38%)! ! !!!!!!!(b)!(!!"#$% != 7.94%)!
Figure 6. Automatic segmentation (!""!") (red) along with manual 
segmentation (cyan) for two images of category 1 with blurred contours.  
 
 

 

Figure 7. Automatic segmentation (red) on the !!" image of sequence S = 17. 
The distance measure is !!"#$% = !.!"%. 
 
 For the images of category 2, which contain a significant amount of occlusion 
(between 30% and 50%), good results were obtained for most sequences, with an 
average distance error less than 10% for 73% of the images. Figure 8 shows some 
examples where a good segmentation was obtained on these images despite the 
presence of occlusion by leaves.  

     Until now we have only studied one of the ellipses (!""!!) among the four 
ellipse estimates produced by our algorithm. This ellipse estimate is not 
necessarily the best ellipse among the four estimates for all images and was only 



selected for illustrative purpose. In general, for images of good quality with a low 
amount of occlusion, the four ellipses are very similar. In less ideal conditions, 
one of the four ellipses generally better matches the actual tomato boundary than 
the others. Let us denote by !""!"# the ellipse that has been selected by the 
operator among the four ellipse estimates, as expected in normal conditions of 
use. The distance measures for this ellipse are shown in Table 1. It can be 
observed that these measures are significantly lower as compared to those for 
!""!!, with a difference ranging from 0.01% to 1.88%. This shows that there is 
always an ellipse, among the four estimates, that best represents the tomato and 
the operator only has to select this ellipse as the final segmentation.  

 
 

          
 ! (a)!(!!"#$% !=!4.16%)! ! !(b)!(!!"#$% =!2.14%)!
Figure 8. Automatic segmentation !""!" (red) along with manual 
segmentation (cyan) for two images of category 2.  

 
Table 1: Mean (!) and standard deviation (!) of !!"#$% measured on the 21 
sequences, for images of category one. One of the four ellipses produced by 
the segmentation algorithm is considered !""!"  along with the best ellipse 
selected by the operator !""!"# . 

 Number of 
images in 
category 1 

!""!! 
 

!""!"# 
 

Difference in !
!!!"#$%  

(!""!! − !""!"#) 
  !!!"#$%  !!!"#$%  !!!"#$%   
    Sequence 1 26 1.72 0.77 1.37 0.35 
    Sequence 2 4 1.85 0.46 1.66 0.19 
    Sequence 3 21 3.4 2.24 2.89 0.51 
    Sequence 4 14 2.73 1.92 2.22 0.51 
    Sequence 5 5 4.81 1.3 4.82 -0.01 
    Sequence 6 0 - - - - 
    Sequence 7 25 1.88 0.65 1.72 0.16 
    Sequence 8 20 6.07 5.75 5.46 0.61 
    Sequence 9 1 5.26 0 5.39 -0.13 
    Sequence 10 5 2.25 0.56 1.86 0.39 
    Sequence 11 4 11.81 4.99 10.54 1.27 
    Sequence 12 19 4.74 1.33 4.25 0.49 
    Sequence 13 5  41.5 16.55 40.48 1.02 
    Sequence 14 4 9.57 2.35 9.18 0.39 
    Sequence 15 0 - - - - 
    Sequence 16 21 4.68 1.08 4.46 0.22 
    Sequence 17 20 11.78 2.44 11.56 0.22 
    Sequence 18 23 14.18 20.06 13.94 0.24 
    Sequence 19 0 - - - - 
    Sequence 20 5 8.76 5.38 6.88 1.88 
    Sequence 21 25 7.34 3.18 7.12 0.22 



SIZE ESTIMATION 
 
     Once the tomatoes have been identified in both images, we then estimate their 
size. This requires the knowledge of the camera parameters which are calculated 
once for all at the beginning of the season, using a calibration pattern [Bouguet, 
2013]. Knowing the elliptic approximations of the tomato in the left and right 
images, a triangulation procedure recovers the center of the sphere in the 3D 
space [Bouguet, 2013]. Each image is then considered independently of the other 
one in order to recover the 3D points of the contour generator and then estimate 
the radius of the sphere. Geometrical properties are used to this aim. Indeed, the 
coordinates of the 3D points can be recovered by calculating the intersection 
between the plane Π  (Figure 3) and the rays back-projected from the ellipse 
points of the image plane. This procedure provides two different estimates of the 
radius, one for each image. Finally a joint optimization procedure enables us to 
estimate the sphere radius. 
 
     Results: In order to evaluate our size estimation procedure, images of ten 
tomatoes (T = 1, 2…,10) were acquired in the laboratory. Two different distances 
with respect to the camera (Positions A and B, corresponding to the first two rows 
of tomatoes cultivated in an open field) and two different heights (H = 10 cm and 
30 cm) with respect to the ground were considered. Also, for each position and 
each given height, the tomatoes were observed at three different orientations, 
which were not necessarily identical for all positions and heights. The acquisition 
system is identical to the one used in the open field. The images were manually 
segmented as we wished to evaluate the metric reconstruction only. 

     In our calculation, it is assumed that the tomato is a sphere in the 3D space. 
However, in reality, the tomato is not a perfect sphere. Figure 9 shows the two 
reference values !! and !! (ground truth) that were measured. These reference 
values were compared with the radius !!"# estimated using the proposed method. 
Let us define two different error percentages with respect to the different 
reference values as: 

!"!! =
!! − !!"#

!!
100,!!!!!!!! = 1,2 

 
 

      
Figure 9. Two reference values 

 
 
 



Table 2 shows the !"!! percentages that have been obtained for all positions and 
orientations. This error is always less than 10% and most (91%) of the values are 
less than 5%, which demonstrates the robustness of our method. The comparison 
with the smaller reference value !! gives slightly higher !"!! percentages in 
most of the cases. This is logical because a sphere of radius equal to !! covers the 
entire tomato. However, depending on the orientation of the tomato in the 3D 
space one or the other reference value can be best approximated. 
 
Table 2: Percentage error !"!! for the tomatoes T = 1, .., 10 computed by 
comparing the estimated radius with the reference value !!. 
 

T =  1 2 3 4 5 6 7 8 9 10 
Pos = A H = 10 O = 1 2.11 2.68 4.79 1.79 3.27 1.42 4.70 4.03 4.20 6.63 

O = 2 2.47 7.32 3.81 1.10 0.15 1.09 3.80 3.87 5.07 8.46 
O = 3 4.51 5.65 4.66 0.33 1.98 0.94 2.66 5.02 5.01 5.65 

H = 30 O = 1 1.51 4.63 0.34 2.70 1.83 4.61 4.20 1.61 2.10 1.91 
O = 2 0.58 3.97 5.32 0.95 0.86 0.04 2.19 1.14 0.25 0.30 
O = 3 1.00 4.73 5.13 4.53 2.52 3.94 2.49 0.39 1.92 0.37 

Pos = B H = 10 O = 1 4.61 1.59 0.64 0.97 4.23 2.23 0.47 2.21 0.17 4.76 
O = 2 4.89 0.87 0.03 0.42 2.35 1.74 0.03 1.29 2.62 0.88 
O = 3 4.05 0.55 1.71 1.08 0.45 1.72 0.22 3.29 2.60 3.03 

H = 30 O = 1 0.47 1.75 1.69 0.92 0.30 1.11 3.47 1.60 2.38 3.54 
O = 2 3.10 1.75 1.37 0.66 0.79 1.27 0.38 0.00 2.09 1.93 
O = 3 1.62 1.02 0.65 2.43 0.41 1.17 6.07 4.50 0.39 0.74 

 
 
     The volume of the tomato can be computed from its estimated radius based on 
the spherical hypothesis. However, since a tomato is not a perfect sphere, a 
correction factor ! was determined experimentally. Then, the corrected volume 
was estimated by: 

!! =
4
3!(!!!"#)

! 
The relative error percentage between the corrected volume and the actual volume 
!! was computed as: 

!"! =
!! − !!
!!

100 

It was observed that the error percentage is less than 15% in 87% of the cases. 
These very preliminary results show that it may be possible to correct the 
measurements made with the spherical hypothesis in order to take into account the 
specific shape of the tomato variety that is cultivated in the field.  
 

RESULTS: ENTIRE SYSTEM 
 

     The size of the tomatoes cultivated in open fields was also estimated for the 
agricultural season 2013, considering the entire system. Table 3 shows the 
estimated radius computed using the automatic segmentation selected by the 
operator !""!"#  along with the reference values and the error percentages. 
Again, it can be observed that the estimated radius is generally closer to the larger 
reference value !! than to the smaller !!, but not always, depending on the 
orientation of the tomato. 
 



 
Table 3: Estimated radius !!"#! obtained with the proposed method 
compared with the reference values !!!and!!!.  
 

 !!(cm) !!(cm) !!"#(cm) !"!!  !"!!  
Sequence 12 2.53 2.03 2.69 6.17 32.32  
Sequence 13 2.07 1.92 2.16 4.61 12.80  
Sequence 14 2.09 1.75 1.77 14.89 1.39  
Sequence 15 2.51 2.2 2.17 13.57 0.97  
Sequence 16 2.48 2.14 2.29 7.52 6.94  
Sequence 17  1.44 1.36 1.17 18.65 13.87  
Sequence 18 1.89 1.51 2.00 5.62 32.20  
Sequence 19 2.57 2.14 2.84 10.46 33.22  
Sequence 20 2.13 1.86 2.71 27.50 45.67  
Sequence 21 2  1.77 2.09 4.56 18.14  

 
 
     The higher errors are mainly due to imperfect segmentation because of the 
ambiguity on the actual position of the tomato contour (shadow, blurring, etc.). 
Note that the proposed method is divided into several steps, and the accuracy of 
the final estimate depends on the accuracy of each of these steps. For instance, an 
imprecision in the segmentation procedure and/or on camera parameters could 
affect the final radius estimate. We studied the error on the radius estimation due 
to imprecision in the segmentation results. For example, it was observed that for 
an error of 1 pixel in the length of the major axis, the radius varies between 0.015 
cm and 0.09 cm (0.5% to 3%) from its reference value for the different positions 
in the scene. 
 

CONCLUSION 
 
     We presented a method for monitoring the growth of tomatoes from images of 
the field, captured by a set of two cameras. For this, we adapted existing methods 
to design a complete end to end system according to the requirements of the 
project. Given the challenges, we proposed to use a priori information throughout 
our system. Figure 10 shows a general overview of the proposed system. First the 
tomatoes are identified in the images using a segmentation procedure and then 
their size is calculated. From the estimated size of several tomatoes, the yield of 
the field can be estimated. Besides, this system allows the user to remotely 
monitor the growth of the tomatoes throughout the agriculture season. A detailed 
presentation of the entire system can be found in [Verma, 2014]. 

     The segmentation procedure was evaluated by comparing the results with 
manual segmentations. The image dataset was divided into three categories 
according to the amount of occlusion in the images. For the images with occlusion 
less than 30%, very good results were obtained on most of the images. The 
average distance between manual and automatic segmentation was less than 10% 
for 87% of the images. For the images with significant amount of occlusion 
(between 30 to 50%), this error was less than 10% for 73% of the images.  

     The metric reconstruction was evaluated as well in laboratory. For that, the 
estimated tomato size was compared with the actual measured size. We found that 



the relative percentage error between the actual size and the estimated size is less 
than 5% in 91% of the cases. 

 

      

Figure 10. Proposed system for yield estimation. 
 
     The proposed system was also used to estimate the size of tomatoes cultivated 
in an open field during the agriculture season 2013. In this case, the size was 
correctly estimated in 80% of the cases. Segmentation imprecision is the main 
cause of error, generally resulting from boundary blurring. 

     Perspectives: Future work will focus on the implementation of the algorithms 
on a gateway/platform system (Machine to Machine (M2M) architecture), the 
goal being to get an operational and ergonomic system that enables farmers to 
monitor easily the tomato growth. The proposed system may also be used to 
monitor other fruits such as apples.  

     The present acquisition system can be modified in order to increase the 
robustness of the system and also gather additional crop information. For 
instance, the authors in [Sakamoto et al, 2012] have recently shown that the 
vegetation index computed using visible and near infrared images is closely 
related to the vegetation index computed using remote sensing data. Therefore, 
using an additional near infrared camera would allow us to determine crop 
biophysical parameters. Additionally, it would provide complementary 
information which can be exploited to improve the robustness of the segmentation 
procedure. For instance, near infrared images can be used to determine the 
position of the tomato, thus resulting in a better initialization for the active 
contours. 
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