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ABSTRACT 
 

A cranberry farm is often a semi-closed water system, where water is applied by 
means of irrigation and drained using an artificial drainage system. Sufficient 
drainage early in the season helps to improve rooting depth, which makes crops 
more resistant to drought and leads to higher cranberry yields. The key to 
maintaining an optimal water balance is timely irrigation and drainage, and 
therefore a proper understanding of the interaction between the two is required to 
increase production efficiency. Current diagnostic methods for identifying 
drainage failure on cranberry fields are based on outflow from tile drains; 
however these methods are time-consuming and expensive because the exact 
locations of tile drains are mostly unknown. In order to reduce the risk of crop 
disease related to waterlogging and optimize the cranberry production process, we 
here present an alternative diagnostic approach for detecting drainage failure 
based on the wavelet transform of hydrological time series obtained with soil 
column experiments. Wavelet transforms can be used to detect singularities in 
hydrological time series based on specific criteria, such as wavelet period, 
frequency, and change in the corresponding wavelet coefficient. Examples 
demonstrated in this paper are (i) wetting front instability characterized by 
variations in power response for short wavelets, (ii) long-term drifts that could 
point to specific characteristics of a laboratory experiment, or in the case of field 
data, weather conditions, and (iii) drainage failure characterized by a primary 
component in the CWT power response that shifts toward a longer wavelet period 
over the course of time. 
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INTRODUCTION 
 

With an increasing demand for cranberries, the challenge in cranberry production 
is to improve water productivity and maximize yield by creating optimal 
conditions in terms of soil water potential (Pelletier et al., 2014). Cranberry farms 
are essentially semi-closed water systems with artificial sand bogs that are 
irrigated using a sprinkler system mounted onto conduits buried under the surface, 
and drained by means of tile drainage. The production process consumes large 
quantities of water (5000 m3 ha-1 yr-1) for irrigation during the growing season, 
flooding during harvest and frost protection in winter (Poirier, 2010). Water is 
drawn from lakes, rivers or streams, and stored in large basins so that it can be 
recycled for multiple use. While irrigation can be controlled with high precision, 
drainage failure can develop unnoticed over the course of several years and 
requires large investments to resolve. 

A paper reporting on cranberry cultivation in Wisconsin in 1853 mentions the 
use of ditches to drain excess water from bogs and flooding when the ground has 
become too dry (Durand, 1942). Flooding is no longer necessary for this purpose 
with the arrival of modern irrigation systems, however cranberry bogs must be 
drained to the water level inside the surrounding ditches in order to maintain an 
optimal pore pressure within the root zone. This is important for a number of 
reasons. First of all, Phytophthara causing root rot are commonly associated with 
irrigation with contaminated surface water (Oudemans, 1999) and enhanced by 
waterlogging in the root zone (Roberts et al., 2005). Secondly, a deeper rooting 
depth increases the cranberry's chances of survival during periods of drought. 
Sufficient drainage early in the season helps to improve rooting depth (Sandler et 
al., 2004) because the vines extend their root network toward deeper soil layers 
where flushed nutrients accumulate. For these reasons growers report a generally 
better yield on bogs with tile drainage where excess soil water is removed through 
gravity-driven flow. 

Timely irrigation and drainage are essential, and therefore a proper 
understanding of the relationship between irrigation and drainage is necessary to 
increase the production efficiency of cranberry farms. Current diagnostic tools for 
detecting drainage failure are mostly based on outflow from tile drains: when 
outflow decreases after a number of years as a result of clogging, drains are either 
cleaned or replaced. These methods are time-consuming and expensive because it 
is often necessary to excavate in order to find the tile drains. 

We here present an alternative diagnostic approach for drainage failure 
detection based on the wavelet transform of hydrological time series obtained 
with soil column experiments. In the first part of the paper we illustrate the basics 
of the wavelet analysis by presenting the discrete wavelet transform of two 
Dohono and Johnstone (1994) test functions, and in the second part of the paper 
we discuss the more accurate continuous wavelet transform of time series of 
tensiometer data from a soil column experiment (Périard et al., 2014). 

  



Functional transforms and hydrological time series analysis 
 
Functional transforms can be used to convert a given function into another 
function, or into a series of functions. The Fourier transform can decompose a 
given signal f(t) into a series of complex sinusoids ejȦt and is given by: 
 

(݆߱)ܨ = ׬ ஶݐ௝ఠ௧݀ି݁(ݐ)݂
ିஶ  (1) 

 
where F(jȦ) represents the amplitudes of the family of sinusoidal base functions 
ejȦt. Fourier transforms are often used in digital signal processing to speed up 
algorithms, because all operations in the time domain have an equivalent in the 
frequency domain that is often faster depending on the complexity of the signal. 
However, the main drawback of the Fourier transform is that the non-stationary 
transient information on the phase of the signal is lost after transformation, which 
makes it impossible to determine the timing of a particular singularity, e.g. 
drainage failure in a hydrological time series. To resolve this, a windowing 
technique can be used in which the Fourier transform is applied to a short time 
frame that allows the estimation of the timing of an event, however the precision 
of the timing is limited to the window length. Likewise, the exact phase of the 
signal can only be determined by approximation because the frequency resolution 
of the window is inversely proportional to the window length according to the 
Heisenberg uncertainty principle. 

Contrary to the Fourier transform, where the base functions are sinusoids that 
are frequency-localized but not time-localized because they extend from -�� WR�
��, the wavelet transform can decompose a time series into a series of functions 
that are localized in both frequency and time. The wavelet transform uses 
different window sizes adapted to the analyzed frequency and time period of the 
signal at the same time, whereas a Fourier transform uses a fixed-size window of 
frequencies only. For this reason, the wavelet transform is more flexible and 
efficient for time series analysis than the Fourier transform, and nowadays 
applications are found in many bogs, including data compression, earthquake 
prediction and climate analysis (Burrus et al., 1998). 

The wavelet transform can also be applied to data sequences, which is very 
useful for filtering known signals from a time series of observations and 
identifying time trends. Applications include the spatial decomposition of rainfall 
data into large- and small-scale rainfall patterns (Kumar and Foufoula-Georgiou, 
1993), analysis of variability in annual stream flow (Coulibaly and Burn, 2004), 
detection of long-term trends in stream flow data (Adamowski et al., 2009), and 
stream flow forecasting (Anctil and Tape, 2004). An overview of applications in 
hydrological time series analysis can be found in Sang (2013). Within the context 
of time series analysis, wavelet transforms have been used for tool monitoring in 
milling operations (Lee and Tarng, 1999), where tool failure was detected using a 
four-level wavelet decomposition of a spindle motor current signal. An irregular 
drainage pattern can be detected in the same way as a tool failure: such pattern 
deviates from patterns expected based on the design drainage in response to 
rainfall, irrigation, and evapotranspiration. 

 



DISCRETE WAVELET TRANSFORM FOR MULTI-SCALE TIME 
SERIES ANALYSIS 

 
Theory (Nason, 2008; Dohono and Johnstone, 1994) 

 
The multi-scale discrete wavelet transform (DWT; Haar, 1910; Mallat, 1989) 
employs a scaling coefficient to translate a time series into a series of wavelets. 
The transformation is performed on a vector of size ݊ = 2௃ that is obtained by 
appending n-N zeros to a time series of arbitrary length N, and involves the 
calculation of detail and smoothed coefficients for time series vector y at 
progressively coarse scales. 

The detail coefficient at the finest time scale is defined as the difference 
between successive pairs of observations: 

 
݀௞ = ଶ௞ݕ െ  ଶ௞ିଵ (2)ݕ
 

where k is the localized time index with ݇ = 1, … ,݊/2. The resulting sequence 
{݀௞}௞ୀଵ௡/ଶ  is the local difference vector of non-overlapping pairs with ݀ଵ = ଶݕ െ  ,ଵݕ
݀ଶ = ସݕ െ ଷ, ݀ଷݕ = ଺ݕ െ  ହ, etc. Next, the smoothed coefficient at the finest timeݕ
scale is given by the scaled local averages of successive pairs of observations, 
formulated as: 

 
ܿ௞ = ଶ௞ݕ +  ଶ௞ିଵ (3)ݕ
 

for ݇ = 1, … , ݊/2. The scaled local average vector {ܿ௞}௞ୀଵ௡/ଶ  is appropriately so 
named because we add non-overlapping pairs of adjacent observations in vector y 
without dividing by n. ck can therefore be viewed as a scaled moving average that 
is similar to a smoothing coefficient. 

Detail coefficient dk and smoothed coefficient ck are determined for 
progressively coarser levels of detail (or resolution) of y, indicated by subscript j. 
We can now write ݀௞ as ݀௃ିଵ,௞ given that the finest level of detail corresponds 
with ݆ = ܬ െ 1 observations. For the next coarsest level of detail (level 2) we 
calculate the detail coefficient as: 

 
݀௃ିଶ,κ = ௃ܿିଵ,ଶκ െ ௃ܿିଵ,ଶκିଵ = ସκݕ) + (ସκିଵݕ െ ସκିଶݕ) +  ସκିଷ) (4)ݕ
 

for κ = 1, … ,݊/4. The smoothing coefficient for level 2 becomes: 
 
௃ܿିଶ,κ = ௃ܿିଵ,ଶκ + ௃ܿିଵ,ଶκିଵ = ସκݕ) + (ସκିଵݕ + ସκିଶݕ) +  ସκିଷ) (5)ݕ

 
The detail and smoothing coefficients are more commonly known as the wavelet 
and scale coefficients. Each wavelet and scale corresponds with a resolution level. 
The number of coefficients reduces by a factor 2 for each successive level, until 
there is only one coefficient left (for j=0). 

The efficiency of the DWT becomes clear when we consider the sparsity of 
the wavelet coefficients. Vectors with unchanging data values result in wavelet 



coefficients that are zero for multiple scales, until a different value is encountered. 
This means that piecewise smooth vectors have sparse wavelet representations. 

The discrete wavelet and scaling function coefficients are finally normalized 
by applying filters to the wavelet coefficients calculated for each scale to ensure 
that the norm, or energy, of the output sequence equals the norm of the input 
sequence. The energy of the input sequence is given by ԡݕԡଶ and the energy of 
the output sequence is given by ԡ݀௞ԡଶ so that: 

 
݀௞ = σ ݃κݕଶ௞ିκஶ

κୀିஶ  (6) 
 
where 

݃κ = ቐ
െ2ିଵ/ଶ κ ݎ݋݂ = 0,
2ିଵ/ଶ κ ݎ݋݂ = 1,

0 ݁ݏ݅ݓݎ݄݁ݐ݋
 (7) 

 
The Haar wavelet transform is now given by the sum of a wavelet function (׋), 
also referred to as the kernel function or mother wavelet, and the set of detail 
representations (ȥ) for all resolution levels: 
 

(ݕ)݂ = σ ௝ܿబ,௞߶௝బ,௞(ݕ) +௞אԺ σ σ ௝݀,௞߰௝,௞௞אԺ
ஶ
௝ୀ௝బ  (8) (ݕ)

 
Analysis of hypothetical time series with the DWT 

 
In order to demonstrate the advantage of the DWT in time series analysis we 
generated and transformed two hypothetical time series with the Wavethresh 
software package written for R (Nason, 2008). The first time series represents the 
Doppler effect, starting with a high frequency that gradually decreases over time 
(Figure 1a). It was generated using the following test function (Dohono and 
Johnstone, 1994): 

 
(ݐ)݂ = 1)ݐ} െ ½{(ݐ sin{21)ߨ + (ߝ ݐ) + Τ(ߝ } + ߝ   ,(ݐ)ܼ = 0.05 (9) 
 
where t is time and Z(t) defines a random time function (or white noise 

model) with zero mean and a signal to noise ratio of 15 to 1. The random time 
function was added to emulate a sensor signal with unexplained variance. After 
decomposing the time series vector with a total length of ݊ = 1024 samples we 
obtain logଶ(1024) = 10 resolution levels that are numbered 0 to 9 in Figure 1a 
corresponding with the coarsest and finest level of detail, respectively. The 
wavelet coefficients plotted for level 9 that show the high-frequency component 
with a period T=1 reach a maximum after time t=13. Subsequently, the amplitude 
slowly decays until no more time-dependent structure can be detected as it blends 
with the white noise (after approximately t=512, which has an equivalence of 256 
in the wavelet basis function's translate number in the graph on the right hand side 
of Figure 1a). The timing of events for resolution level 9 can be established with a 
small error of T=2 (calculated as ݊ × 2ିଽ), however the timing of events becomes 
increasingly inaccurate for lower resolution levels. The level 5 wavelet maximum 
is reached after t=144, determined with an error of t=32 (calculated as ݊ × 2ିହ), 



while the timing of the level 0 maximum after t=512 has an error as high as 
t=1024 (݊ × 2଴). Apparently the time series is not long enough to be able to 
estimate the timing of this type of low-frequency components. 

Despite a negative relationship between wavelet period and timing error, the 
DWT method is very useful for detecting singularities in the high frequency 
domain. Figure 1b shows a second time series defined by the following test 
function (Dohono and Johnstone, 1994): 

 
(ݐ)݂ = 4 sin ݐߨ4 െ ݐ)݊݃ݏ െ 0.3) െ 0.72)݊݃ݏ െ  (10) (ݐ
 

where the signum function is defined as: 
 

(ݐ)݊݃ݏ = ቐ
െ1 ݐ ݂݅ < 0
0 ݐ ݂݅ = 0
1 ݐ ݂݅ > 0

 (11) 

 
After a discrete wavelet transform, event can be detected in the transformed 
wavelets based on specific criteria, such as wavelet period, frequency and the 
change in the corresponding wavelet coefficient. This change is evaluated for the 
mother wavelet containing the differences between successive pairs of 
observations (wavelet coefficients) calculated for a resolution level. The time 
series in Figure 1b has two jumps that were detected by filtering the wavelets with 
period T=2 (resolution level 8) and a wavelet coefficient threshold of 0.2 absolute. 

 

 
 

Figure 1. Discrete wavelet transform and event detection for Dohono and 
Johnson test functions with a 15:1 signal to noise ratio (examples found in 
Nason, 2008). 



CONTINUOUS WAVELET TRANSFORM FOR THE COMPLETE TIME-
SCALE ANALYSIS OF TIME SERIES DATA 

 
Theory (Farge, 1992; Torrence and Compo, 1998) 

 
While the multi-scale DWT can be used to detect events in the high-frequency 
domain, it is not very accurate for the low end of the frequency domain because 
the discrete wavelet uses only a subset of wavelet coefficients to decompose a 
time series. A complete time-scale representation of local and transient events 
associated with different frequencies can be obtained with a continuous wavelet 
transform (CWT; Farge, 1992), and this transform allows for a higher accuracy in 
determining the timing of these events. 

The continuous wavelet transform of time series vector y is defined as the 
convolution of yj with a scaled and translated version of wavelet function ȥ0: 

 

௠ܹ(ݏ) = σ ேିଵכ௠ᇲ߰ݕ
௠ᇲୀ଴ ቂ൫௠

ᇲି௠൯ఋ௧
௦ ቃ (12) 

 
where an overview is obtained of how amplitudes of detail representations (given 
by the complex conjugate ȥ*) of the original time series (y) are scaled and 
translated along the continuous wavelet scale (s) and discrete localized time index 
(m). The continuous wavelet scale is the equivalent of the resolution level in the 
DWT. In order to qualify as a wavelet function, ȥ0 must be localized in both time 
and frequency space and have zero mean (Farge, 1992). Here we used the Morlet 
wavelet, a complex non-orthogonal plane wave (i.e. a wave whose maxima are 
equally spaced) modulated by a Gaussian function: 

 
߰଴(ߟ) =  ଴.ଶହ݁௜ఠబఎ݁ି଴.ହఎమ (13)ିߨ

 
where Ȧ0 is a nondimensional frequency, and Ș a non-dimensional time 
parameter. Here we used Ȧ0=6 to satisfy the zero mean condition. 

A wavelet power spectrum facilitates the analysis of the CWT, and is 
obtained by normalizing the absolute expectation value of Wm(s) with respect to 
the average variance ı2 over a range of scales: 

 
| ௠ܹ(ݏ)|ଶ ଶΤߪ  (14) 

 
The longest period for which observed trends can be detected depends on the 
length of the time series. A study on the variability in annual Canadian stream 
flows assumes that their 88-year dataset can be used to detect variance for periods 
up to 12 years, or 7 complete cycles in the time series (Coulibaly and Burn, 2004). 
  



(a) (b)  
 

Figure 2. Cumulative particle size distributions at depths of 10-15 cm 
(denoted "Top") and 71-85 cm (denoted "Bottom") for the two soil columns 
after the experiment. 

 
Experimental time series of tensiometer data 

 
An experiment was designed to simulate the effects of variations in the 
groundwater level on the hydrodynamic response of the sandy substrate of 
cranberry bogs (Périard et al., 2014). Two sandy soils typically found on 
cranberry bogs were reconstructed in a laboratory setting using transparent 
columns with a height of 100 cm and a diameter of 15.24 cm (6 inches). The base 
material was added in layers of 2 cm and spread out every time to obtain a 
uniform bulk density of 1.6 g.cm-3. Material of the upper 20 cm was mixed with 5 
g of zirconium oxide (ZrO2) tracer per 100 g of sand. This tracer exists of 
spherical particles with d50=1.25 ȝm, which corresponds to the size of colloidal 
particles, and is considered inert for the purpose of this study. The composition of 
the soil columns after the experiment is plotted in Figure 2 and can be 
summarized as follows: 

x Soil column 1: 20 cm of medium coarse sand (median particle size 
d50=229 ȝm) on top of 80 cm of fine sand (d50= 174 ȝm); 

x Soil column 2: 20 cm of fine sand (d50=133 ȝm) on top of 80 cm of 
medium coarse sand (d50=229 ȝm). 

Both columns were placed in the experimental setup shown in the schematic of 
Figure 3. Three components controlled the flow inside the column and were 
activated by opening or closing the valves. 

x Recharge component: Recharge was activated by the control unit 
(Campbell CR-10) by opening an acting valve (A) and closing a second 
acting valve (B; Asco 8262), following which a constant head of 76 cm 
was applied to the bottom of the column. The constant head was 
established using a Mariotte's bottle that maintained atmospheric pressure 
at 76 cm above the bottom of the soil column by letting air enter at that 
level. 

x Drainage component: Drainage occurred when the control unit closed 
valve A and opened valve B (reversed valve position with respect to the 



recharge mode), in which case a 5 cm suction was applied by an 
Erlenmeyer flask with a water inlet 5 cm below the bottom of the soil 
column. 

x Irrigation component: By opening valve C a constant head of 9 cm was 
applied equally across the top surface of the soil column. Again a 
Mariotte's bottle was used to establish the constant head. 

PX-26 tensiometers were placed at depths of 5, 15, 25, 35, 45, 55, 65, 75, 85 and 
95 cm in order to monitor the pressure over time. The experiment was started by 
saturating the soil columns to a depth of 35 cm below the top, after which the 
columns were allowed to drain to a depth of 55 cm under a suction of 5 cm 
applied to the bottom. The control unit was programmed to alternately activate the 
recharge and drainage modes in the following loop sequence: 

x Recharge mode was activated as soon as the pressure of the tensiometer 
installed at a depth of 55 cm dropped below zero, meaning that the 
groundwater level reached a depth of 55 cm. Recharge mode caused an 
upward flux of water inside the column resulting from a 76 cm constant 
head applied to the bottom of the column. 

 
 

 
 
Figure 3. Schematic of the soil column experiment. After saturating the soil 
column from the bottom up to 35 cm below the top, the water level oscillated 
between ௅55 cm and ௅35 cm by alternately opening the recharge valve (A) 
and drainage valve (B). Irrigation was initiated by opening valve C. 



x Drainage mode was activated as soon as the pressure of the tensiometer at 
a depth of 35 cm exceeded zero, meaning that the groundwater level 
reached the level of this tensiometer. In this mode, the soil was allowed to 
drain by means of downward gravitational flow and a suction of 5 cm. 

The irrigation mode was activated once during the entire sequence independently 
from the recharge and drainage modes. 

 
Analysis of experimental time series with the CWT 

 
Figure 4 shows the pressure time series and the normalized wavelet power spectra 
obtained after a continuous wavelet transform of data for the top and bottom 
sensors in soil column 1 with 20 cm of medium coarse sand on top of 80 cm of 
fine sand. The top and bottom sensors correspond with a depth of 5 cm below the 
surface (within the top layer of fine sand), and for the bottom sensor at a depth of 
85 cm (within the bottom layer). CWTs were performed using the dplR package 
written for R (Bunn, 2008). Taking the pressure time series with one-minute 
sampling intervals as input, we calculated the CWTs between scales 0 and 
2ଵ଴ = 1024 so that the maximum possible period of the transformed wavelets 
was 1024 minutes (17 hours). This is the range of the vertical axis in the contour 
plots of the CWTs, and within this range four sub-octaves were calculated per 
octave (four scales per power of two) yielding a total of 4 × 2ଵ଴ = 4096 scales. 
Colors vary between yellow (low power response) and blue to violet (high power 
response), while grey shades represent random noise for which | ௠ܹ(ݏ)|ଶ <   .ଶߪ
A cone of influence was also added to the plot to indicate the region of interest, 
given that the diagonally hatched areas at the beginning and end of the time series 
mark the range where the CWT is influenced by boundary effects. 

The top sensor of soil column 1 recorded a pressure oscillating between ௅43.4 
cm and ௅30.4 cm (Figure 4a), corresponding with the alternating opening and 
closing sequence of the recharge and drainage valves. For the bottom sensor we 
observed pressure oscillations between 22.6 cm and 51.5 cm, meaning the water 
level stood between the top and bottom sensors at all times during the experiment 
(Figure 4b). At t=1018 min, 60 mm of irrigation was applied with a Mariotte's 
bottle that maintained a constant head of 9 cm at the soil surface for a duration of 
50 min. This irrigation event was detected by both sensors, and is visible in the 
CWT power spectrum (Figure 4a and b) as a cone-shaped blue zone centered on 
t=1036 min. The wavelet with period T=5 min at t=1018 min (represented by a 
green zone in the CWT of Figure 4a) marks the onset of the irrigation event, after 
which the uniform spatial and temporal distribution of irrigation causes a very 
abrupt power response maximum for wavelets with a period longer than T=1 hour 
for the top sensor at a depth of 5 cm below the surface. 
Now the recharge-drainage cycle contains two dominant wavelets, which are most 
visible in the CWT after t=2500 min. There we observe two blue bands, the upper 
wider than the lower, that can be followed diagonally across the CWT and that 
extend across the entire time series. The wide band corresponds to the process 
with the longest wavelet periods, i.e. recharge, while the narrow band corresponds 
to the process with a series of shorter wavelet periods, i.e. drainage. Recharge 
starts with a wavelet period of T=40 min at t=50, and slows down to 
approximately T=6 hours at t=3000 min, which is after 29 recharge-drainage 



cycles. Similarly, drainage starts with a wavelet period of T=20 min at t=50 min, 
and decreases to T=3 hours at t=3000 min. Hence, the drainage is approximately 
two times faster than recharge. A quick calculation learns that the duration of the 
recharge-drainage cycle increases on average by 7.9% per cycle throughout the 
time series, which is evidence of severe drainage failure almost immediately after 
the beginning of the experiment. 

While the top sensor wavelets with a short period (lower boundary of the 
CWT in Figure 4a) follow a stable pattern in the beginning, they become 
increasingly irregular after the irrigation event (t=1060 min) and are characterized 
by a greater amount of white noise distributed over a wide range of scales in the 

 

(a)  

(b)  
 

Figure 4. Pressure time series and CWT for soil column 1, which contains a 
profile with 20 cm of medium coarse sand on top of 80 cm of fine sand. 
Pressure for the top sensor at 5 cm (a) and the bottom sensor at 85 cm (b) 
below the surface. Diagonally hatched areas at the beginning and end of the 
sequence mark the range where the CWT is influenced by boundary effects. 



high end of the frequency domain (plotted in grey shades in Figure 4a). This 
phenomenon is most likely explained by the timing of irrigation, which is started 
in drainage mode while a 5 cm suction is applied at the bottom of soil column 1. 
The suction creates an air pressure potential in the partially saturated upper part of 
the column and causes the air to redistribute within the profile. As a result, the 
wetting front becomes instable and the top sensor detects short-term variations in 
pressure that remain nearly undetected by the bottom sensor (Figure 4b). 

At a more detailed level we can observe that the pressure time series follow a 
concave downward pattern during the recharge periods. For the bottom sensor we 
furthermore observe that the drainage periods are characterized by a concave 
 

(a)  

(b)  
 
Figure 5. Pressure time series and CWT for soil column 2, which contains a 
profile with 20 cm of fine sand on top of 80 cm of medium coarse sand. 
Pressure for the top sensor at 5 cm (a) and the bottom sensor at 85 cm (b) 
below the surface.  



upward pattern, which is reflected by a periodically decreasing period of the 
secondary component (the lower narrow dark blue band in Figure 4b with conical 
shapes suspended from the bottom). 

The reversed soil layer sequence in column 2, which contains a profile with 
20 cm of fine sand on top of 80 cm of medium coarse sand, leads to a rather 
different response with only a very slight increase of the drainage wavelet period 
from T=7 min at t=50 min to T=9 min at t=3000 min (lower horizontal green band 
in Figure 5a and lower horizontal blue band in Figure 5b). With a total of 264 
recharge-drainage cycles the increase in period is 0.1% on average per cycle, still 
not negligible in the long run but nevertheless much lower than the 7.9% increase 
per cycle observed for the medium coarse on fine sand profile of soil column 1. 
Again we observe a concave downward pattern for the pressure curve during the 
recharge periods and a concave upward pattern during the drainage periods. 

The wetting front after irrigation is not as unstable as in soil column 1, 
however a second phenomenon observed in the CWT of soil column 2 data is that 
the sensor signal develops a slight drift after t=2000 min with a period between 
T=30 min and T=6 hours, which could point to the need to recalibrate the sensors. 

 
CONCLUSION 

 
Wavelet transforms can be used to detect singularities in hydrological time series 
based on specific criteria, such as wavelet period, frequency, and change in the 
corresponding wavelet coefficient. Examples demonstrated in this paper are (i) 
wetting front instability characterized by variations in power response for short 
wavelets, (ii) long-term drifts that could point to specific characteristics of a 
laboratory experiment, or in the case of field data, weather conditions, and (iii) 
drainage failure characterized by a primary component in the CWT power 
response that shifts toward a longer wavelet period over the course of time. 

The recharge-drainage cycle in soil column 2 remained relatively constant, 
while column 1 showed evidence of serious drainage failure in combination with 
an unstable wetting front. In a future study we want to link these outcomes to the 
texture distribution and spatio-temporal distribution of the zirconium oxide tracer 
in the soil columns, in order to be able to propose an optimal irrigation and 
drainage design for cranberry farms. Such an approach would involve 
measurement of physical and hydraulic characteristics of soil samples and 
computational modeling of the hydraulic processes in the soil in response to soil 
texture and water retention characteristics. 
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