
MULTIVARIATE GEOSTATISTICS AS A TOOL TO ESTIMATE 
PHYSICAL AND CHEMICAL SOIL PROPERTIES WITH REDUCED 
SAMPLING IN AREA PLANTED WITH SUGARCANE 
 
     G. M. Sanches, and H. C. J. Franco 
 
     Brazilian Bioethanol Science and Technology Laboratory 
     National Research Center for Energy and Material 
     Campinas, SP, Brazil 
 
     A. Z. Remacre 
 
     Institute of Geosciences 
     University of Campinas 
     Campinas, SP, Brazil 
 
     P. S. Graziano Magalhães 
 
      College of Agricultural Engineering 
     University of Campinas 
     Brazilian Bioethanol Science and Technology Laboratory 
     National Research Center for Energy and Material 
     Campinas, SP, Brazil 
 
 
 

ABSTRACT 
 

Precision Agriculture (PA) can be described as a set of tools and techniques 
applied to agriculture in order to enable localized production management, 
considering the spatial and temporal variability of crop fields. Among the 
numerous existing tools, one of the most important ones is the use of geostatistics, 
whose main objective is the description of spatial patterns and estimation data in 
non-sampled places. Nowadays, one of the most limiting factors to the use of PA 
is the number of samples required to represent the spatial soil attributes. Within 
this context, multivariate geostatistics emerges as a promising technique for 
mapping and quantification of soil attributes. One of the techniques, which 
minimize the number of samples needed, is the use of maps obtained by soil 
sensors equipment to identify points for sampling. The objective of this study was 
to map the spatial variability of chemical and physical soil properties, using a 
reduced number of samples, and applying kriging with external drift (KED) based 
on maps of apparent soil electrical conductivity (ECa). Samples were taken on a 
regular grid georeferenced at two depths. ECa soil readings in the whole area 
were made by means of a direct contact sensor. The results indicate that it is 
possible to obtain maps with acceptable precision in the spatial distribution of 
chemical (CEC, BS, SEB, K and pH) and physical attributes (clay) of soil from of 
20 sampling points (0.4 samples ha-1) 
  



 
determined based on the ECa. The methodology used to obtain the maps of spatial 
variability of chemical and physical soil properties indicate that it is possible to 
predict, with acceptable accuracy, maps that can be used for fertilizer 
recommendation at variable rate. This approach opens new possibilities for other 
important agronomical attributes that can be estimated over large areas from a 
small number of samples, assisting farmers in crop management. 
 
 
Keywords:     soil sensors, kriging with external drift (KED), Saccharum spp., 
variable rate technology. 
 
 
 

INTRODUCTION 
 

Precision agriculture can be understood as a set of tools that aims to 
understand the spatial and temporal variability found in the field and thus take 
advantages, treating differently each portion of the field, aiming higher 
profitability and lower environmental impact. Despite constant advances, one of 
the factors that limit the use of AP is the sampling process required to represent 
the physical and chemical properties of soil and/or plant spatially (Bramley and 
Trengove, 2013). To obtain a proper mapping of the physical and chemical crop 
attributes dense sampling in the field is need, which involves manual sampling, 
sample pretreatment, chemical laboratory analysis and physical mapping, making 
the activity physically and economically impracticable (Peets et al., 2012). 
Moreover, the lack of a complete technology package makes the AP only a 
promising technology, which adopts the sugarcane sector, partly, in search of a 
sustainable management of the production of sugar cane (Silva et al., 2011). 
Although the yield monitor, the autopilot, the variable rate technology and some 
soil and plant sensors are part of the technology package of the AP, the 
appropriateness and applicability of the information to define methods and 
management models is the major challenge in this area. One of the current 
technologies to overcome this challenge is to use soil and/or plant sensors, which 
is a rapid, low cost and environmentally friendly method to describe the spatial 
variability (Peets et al., 2012). These devices are based on different principles and 
provide information that varies in precision and accuracy, enabling detect the 
spatial variability of the crop in relation to physical and/or chemical soil 
properties, the presence of water (Adamchuk et al., 2004) or biomass production. 
The sensors developed for measuring the soil and/or plant properties have the 
potential to provide benefits such as increased density measurements at a 
relatively low cost. Agriculture in many countries still, especially Brazil, is 
focused on areas treated as homogeneous, going to the concept of the average 
requirement for application of inputs, not considering the specific needs of 
different farming sites (Rossato, 2011). In this scenario, the correct distribution of 
fertilizers for plants, which ensures a lower environmental impact and increased 
profitability and productivity for farmers, makes the research in search for sensors 



to measure directly or indirectly the nutrients in the soil and/or plant increasingly 
intensified. 

Within this context of need for available technologies for the acquisition of 
high quality information, aiming the adequate management of spatial variability 
of crops, the soil apparent electrical conductivity (ECa) has emerged as an 
effective method to evaluate quickly, high resolution and low cost of the overall 
soil fertility (Sudduth et al., 2005). Studies show that soil ECa is related to local 
topographic conditions, where areas with lower elevation present higher 
conductivity when compared the areas of higher elevation. These differences are 
attributed to the combined effects of the accumulation of water and salts in areas 
of lower slope (Fritz et al., 1999). Intrinsically related to moisture content, 
research shows that ECa is also able to detect variations in soil properties such as 
salinity, clay content, cation exchange capacity, size and pore distribution, organic 
matter and temperature (Corwin and Lesch, 2003; Kaffka et al., 2005; Kitchen et 
al., 2003; Sudduth et al., 2001). Another important question in the context of ECa 
variability along the field is its temporal stability, where studies have shown that, 
despite the magnitude of the temporal electrical conductivity (measurements vary 
with temperature and soil moisture), the spatial pattern of the soil ECa remains 
constant (Harstock et al., 2000). 

As stated, several results in the literature show the relationship of ECa with 
soil properties, however, the response of these sensors to the spatial variability 
will always depend on the chemical and physical soil properties of the area, 
making the response of these sensor influenced, to a lesser or higher degree, for 
certain property. Although there is sufficient evidence in the literature that the 
ECa has great potential for mapping soil attributes, few studies have been focused 
on quantitative estimates (De Benedetto et al., 2011), mainly in the soil attributes 
of greatest agronomic interest. Considering the complexity of the relationships 
between different attributes on the nature in studies of spatial variability, several 
variables can be sampled simultaneously to best explanation of the phenomenon. 
Some of these variables can be subsampled and other over sampled. If 
subsampled and over sampled variables present some relationship, then over 
sampled variables can be used to make a better estimate of the subsampled 
variables (Isaacks and Srivastava, 1989). For this situation, geostatistics provides 
a set of tools to co-estimates, where the primary variables (greater interest) are 
subsampled and secondary variables (usually over sampled) are those that can be 
used to improve estimates of primary variables. Several estimation methods have 
been developed for fusion of primary and secondary information, such as the 
multivariate extension of kriging, known as cokriging (Goovaerts, 1997). 
However, these techniques assume stationarity intrinsic to both the variable of 
greatest interest and the secondary variable, and a strong correlation between 
them (Webster and Oliver, 2001). On the other hand, a different way to take into 
account the secondary variable is assuming that it presents a spatial trend, which 
is the significantly related with the primary variable (De Benedetto, 2011). Two 
non-stationary interpolation methods are possible, such as kriging with external 
drift (KED) (Wackernagel, 2003) and regression kriging (RK) (Goovaerts, 2000). 
Knowing that there exists a physical correlation between ECa and chemical and 
physical soil attributes, the propose of this study was to show that it is possible to 



obtain soil fertility maps based on a few soil samples taken at strategic points in 
the field, selected from spatial variability of ECa map. 

 
 
 

MATERIALS AND METHOD 
 

Study Area 
 
The experiment has been conducted since 2010 in a commercial site of 50 ha 

in Serra Azul, São Paulo State, Brazil, which belongs to Pedra Sugar Mill. The 
climate is tropical to subtropical, and mean annual rainfall and temperature are 
1560 mm and 22.9oC, respectively. The soil is a Typic Hapludox (Soil Survey 
Staf, 2010). It is clayey and its clay fraction being dominated by kaolinite, and 
iron and aluminium oxihydroxides mainly. The site had been under continuous 
sugarcane cultivation for 30 years. The area was divided into a regular 50 m grid 
(204 sample points) and points located in the field using a differential global 
positioning system (DGPS) (Ag114™, Trimble, Navigation Ltd, Sunnyvale, CA, 
USA). Soil sample was taken at two depths (0.00 to 0.20 m and 0.20 to 0.40 m) at 
each grid point and a wet-chemical analysis was done to determine soil physical 
and chemical attributes (macro and micronutrients) (Fig. 1). The point’s elevation 
was also used to characterize the slope of the field. Apparent electrical 
conductivity (ECa) was measured at 0.30 m using the Veris (model 3100 sensor 
system, Veris Technologies of Salina, KS, USA). For the development of this 
work, targeting an initial investigation, we selected some attributes of agronomic 
interest, determined in both depths mentioned, as clay, pH, potassium (K), sum of 
exchangeable bases (SEB), Cation Exchange Capacity (CEC) and Base Saturation 
(BS). 
 

 
Fig.  1. Grid (204 points) and soil sensor path (black lines) for ECa soil data     
collecting (left) and slope (right). 
 



 
Data Analysis 

 
     All the collected data were submitted to a statistical and geostatistical 
treatment. Measures of central tendency, dispersion and Box plot were evaluated. 
The Box plot allowed to evaluate the dispersion of the data and the existence of 
outliers in them. The data that have a high density, such as apparent electrical 
conductivity, were subjected to a pre-treatment in order to remove possible 
"noise" coming from the sensors and outliers. The pre-treatment was based on 
data standardization to mean zero and standard deviation 1 (one) by removing the 
normalized data outside the range of ± 3 of the normal distribution of data. Soil 
others data was also analyzed in order to eliminate the possible outliers arising of 
the readings in the field or laboratory errors. Spatial analysis of chemical and 
physical soil properties data was also performed to check the veracity of outliers. 
After that, the analyze was divided into two steps; in the first step (Fig. 2) we used 
Moran’s I spatial autocorrelation to evaluate the spatial structure in all measured 
DWWULEXWHV�� 7KH� OLPLW� FDVH�� ,� §� ��� HYLGHQFHV� SHUIHFW� JOREDO� VSDWLDO� VWUXFWXUH��
indicating an attribute potentially valuable for PA. On tKH� RWKHU� KDQG�� ,� §� ���
evidence random spatial distribution, indicating an attribute with little utility for 
PA management. The Moran’s index was calculated by eq. 1 (Cliff and Ord, 
1973).  
 
                     Ij = zj

T L zj       eq. 1 
Where zj is the vector of the mean-centred normalized attribute estimated at grid 
points, zi,j = (ui,j- ǌj)/ıj. 
 
     Next, the experimental and theoretical semivariograms were constructed for 
data interpolation, using a regular grid of 5 meters and applying ordinary kriging. 
All these analyzes were performed using ArcGIS 10.2 (ESRI, Environmental 
Systems Research Institute, Redlands, CA, USA) using the Spatial Analyst Tools 
and Geostatistical Analyst Tools extensions. Subsequently the construction of 
thematic maps, a second step (Fig. 3) was performed. This step includes the 
determination of a reduced number of points in the area (20) to, using KED based 
on the ECa (secondary variable), reconstruct the thematic maps of soil attributes 
(primary variable). We used the software GeoMS (CERENA, Lisbon, Portugal) to 
performing KED. Finally, we performed the comparison of maps obtained in the 
original grid (204 points) with interpolated data by KED, using Pearson’s 
correlation and kappa coefficient. Kappa index (eq. 2) can be used as a measure of 
agreement between model predictions and reality (Congalton, 1991) or to 
determine if the values contained in an error matrix represent a result significantly 
better than random (Jensen, 1996).  
 



 
Fig.  2. Diagram of the first step in data analysis. 
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Where ࡺ is the total number of sites in the matrix, r is the number of rows in 
the matrix, ࢏࢏࢞ is the number in row i and column i, ࢞ା࢏ is the total for row I and 
  .ା is the total for column I (Jensen 1996)࢏࢞

To calculate the Kappa Index a random sample of approximately 10% of the 
total estimated data was used. Landis and Koch (1977) suggest the following 
interpretation for the index (Table 1).  
 
Table 1. Interpretation of the Kappa Index.(Landis & Koch 1977). 

Values of Kappa Interpretation 
<0 No agreement 

0-0.19 Poor agreement 
0.20-0.39 Fair agreement 
0.40-0.59 Moderate agreement 
0.60-0.79 Substantial agreement 
0.80-1.00 Almost perfect agreement 

 
 

 
Fig.  3. Diagram of the second step in data analysis. 



 
 

Kriging with External Drift 
 
Aiming to make coestimates, KED estimates a primary variable Z(x) based on 

a secondary variable Y(x) correlated, with an insufficiently sampled primary 
variable while the secondary variable, which will assist in estimating the first, is 
more densely sampled. If Z(x) and Y(x) are correlated, according Wackernagel 
(1995), one may describe this correlation with a linear correlation: 
 
[(ݔ)ܼ]ܧ   = ܽ଴ + ܾଵܻ(ݔ)     eq. 3 

This means that the spatial variability of the secondary variable is related to 
the local trend of primary variable (Xu et al. 1992). The estimator of KED can be 
written as (Wackernagel, 1995): 
 
  ܼ௄஽ாכ (଴ݔ) = σ ௜ܼ௡ߣ

௜ୀଵ  eq. 4     (௜ݔ)
 
     Interesting to note from equation 4 is the fact that the secondary variable Y(x) 
does not enter directly in the estimate, such as with the cokriging estimators. This 
makes KED interesting when compared with other methods, once the estimated 
primary variable is made exclusively from observed values (eq. 5, Wackernagel, 
1995): 
 

 ൞
σ ௜ݔோ൫ܥ௝ߣ െ ௝൯ݔ െ ଵߤ െ (௜ݔ)ݕଶߤ = ௜ݔ)ோܥ െ ݅ ܽݎܽ݌ (଴ݔ = 1,݊௡
௝ୀଵ

σ ௝ߣ = 1௡
௝ୀଵ

σ ௝൯ݔ൫ݕ௝ߣ = ௡(଴ݔ)ݕ
௝ୀଵ

 eq. 5 

Where ࣆ૚ ܽ݊݀ ࣆ૛ are the Lagrange multipliers and ࡾ࡯൫࢏࢞ െ  ൯ is the࢐࢞
covariance of the residues between ݔ௜  .௝ pointsݔ ݀݊ܽ 

According to Xu et al. (1992) the advantages of KED is that it is easy to 
implement; it does not need the covariance ܥଶ(݄) and ܥଵଶ(݄); the system has 
dimension (݊ + 2) unlike (݊ଵ + ݊ଶ) as in ordinary cokriging and maps Z(x) are 
very similar and follow the trend of the maps Y(x). Also according to the authors, 
the disadvantages of this method is that maps of Z(x) will be well correlated with 
Y(x), independent of the linear relationship is true or not; KDE does not capture 
the cross-correlation between Z(x) and Y(x), unlike cokriging; requires that the 
secondary data is at all sample points of the primary data and all nodes of the 
regular grid to be interpolated and requires the covariance of the residuals. The 
regionalized variable ܼ(ݔ) can be decomposed as ܼ(ݔ) = (ݔ)݉ +  where ,(ݔ)ܴ
the ݉(ݔ) is the trend component and ܴ(ݔ) the residual. The residual variogram is 
given by eq. 6 (Goovaerts 1997), subtracting the variogram of ܼ(ݔ) the average of 
the squared difference of trend components in the ݔ and ݔ + ݄ points, which are 
unknown. 

 
(݄)ோߛ2   = (݄)ߛ2 െ (ݔ)݉]}ܧ + ݔ)݉ + ݄)]ଶ}  eq. 6 

 



However, Landim and Yamamoto (2013) suggest that the term (ݔ)݉]}ܧ +
ݔ)݉ + ݄)]ଶ} is equivalent to the variogram of trend component, obtaining eq. 7. 

 
(݄)ோߛ2    = (݄)ߛ2 െ  ெ(݄)    eq. 7ߛ2

Yet according to the authors, as the primary variable has a linear relationship 
with the secondary variable (eq. 3) the coefficients of the regression ܽ଴ and ܾଵ can 
be easily calculated with the sampling points. Even as required by KED, know the 
values of the secondary variable on all nodes of the regular grid to be estimated, 
applying the coefficients of the regression line in the secondary variable results in 
the trend component, which shall be known in all the nodes of the regular grid. 
Finally the variogram trend component can be calculate, which subtracted from 
the variogram primary variable, resulting in residual variogram. The only 
restriction is that the variogram of the primary variable has a higher sill than the 
variogram trend, to obtain positive residuals. 

 
RESULTS AND DISCUSSION 

 
Initially, all data were normalized and plotted in a Box Plot in order to identify 

outliers that could cause detrimental bias to correlations and covariance (Fig. 4). 
Any entry deviating from the mean by more than three standard deviations (for a 
given attribute) was treated as outlier, but with some exceptions arising from the 
spatial analysis. A maximum of 4 % of data were removed as outliers from soil 
data and 1% for ECa data (Table 2). 

Moderate spatial autocorrelation was detected for ECa, clay and pH, in the 
both layers and SEB only in the second layer, bean the highest value presented by 
clay, which was not unexpected due to its spatial variability intrinsically related to 
the characteristics of local relief and the type of soil. The high spatial 
autocorrelation value of ECa confirming its strong association with clay (Corwin 
& Lesch 2003; Kitchen et al. 2003; Machado et al. 2006). K, CEC and BS in two 
soil layers showed modest spatial structure (1.3-0.27). This could be explained by 
K being a cation of low concentration in the soil in relation to Ca, Mg and be 
absorbed in large quantities by sugarcane. Moran's Index is a good indicator of 
the quality of the data, showing whether they occur according to a trend or are 
spatially random. This fact contributes to the construction of the variables 
variogram, since random attributes tend to have high nugget effect, making it 
difficult to adjust to the theoretical model. 
 



 

Fig.  4. Box plot of the analysed attributes in layers of 0.00 to 0.20m (A), 0.20 
to 0.40m (B) and the ECa of 0.00 to 0.30m (C). Raw (right) and clean (left) 
data. 

Variogram models were mostly exponential and anisotropy was founded for 
the data set with exception of clay that was fit to a spherical model showing a 
linear behavior at the origin and no anisotropy, confirming its stable and well-
structured behavior along the field (Table 3). With the adjusted models, we 
proceeded to ordinary Kriging of the data using a minimum of 3 and a maximum 
of 6 points per neighbors quadrant to estimate the physical and chemical attributes 
and a minimum of 10 and a maximum of 20 neighboring points for ECa (Fig. 5 
and 6). For the second stage of data analysis, based on thematic map of ECa, we 
manually select the reduced grid, at points with distinct values and spread inside 
the outline of the area (Fig. 6). Total 20 points were selected, corresponding to 
one sample per 2.5 hectare, which is reasonable from the economic point of view 
farmers wishing to employ PA. 
 
Table 2.  Descriptive analysis of the chemical and physical soil attributes at 0.00-
0.20m and 0.20-0.40m, and ECa at 0.00-0.30m and Moran´s I. 
 

 
Valid 

N Mean Variance Std. 
Dev. 

Coef. 
Var. 

Std. 
Error Skewness Kurtosis Moran´s 

Index 
 Depth 0.00 to 0.20m 

Clay 199 443.131 2023.209 44.980 10.151 3.189 -0.353 -0.305 0.664 

pH 203 5.141 0.076 0.276 5.373 0.019 -0.106 -0.292 0.424 

K 202 2.046 1.017 1.009 49.294 0.071 0.592 0.057 0.175 

SEB 201 34.381 97.362 9.867 28.700 0.696 0.350 -0.100 0.134 

CEC 201 64.835 102.358 10.117 15.605 0.714 0.423 0.233 0.273 



BS 201 52.463 77.750 8.818 16.807 0.622 -0.247 -0.049 0.130 

 Depth 0.20 to 0.40m 

Clay 199 451.692 2081.525 45.624 10.101 3.234 -0.504 0.202 0.675 

pH 201 5.151 0.081 0.284 5.519 0.020 -0.344 -0.170 0.432 

K 201 1.820 0.864 0.929 51.060 0.066 0.650 -0.220 0.175 

SEB 202 22.913 36.064 6.005 26.209 0.423 0.313 -0.195 0.251 

CEC 203 47.847 71.450 8.453 17.666 0.593 0.424 -0.344 0.484 

BS 202 48.322 71.085 8.431 17.448 0.593 -0.006 0.265 0.184 

 Depth 0.00 to 0.30m 
ECa 

(Raw) 12002 4.040 3.189 1.786 44.205 0.016 2.169 12.343 
0.592 ECa 

(Clean) 11527 3.813 1.667 1.291 33.865 0.012 0.011 -0.207 

 
 
 
 
 
 
 
 
 
 

Table 3. Parameters of the theoretical models fitted to experimental data with 
verification of anisotropy. 
 
Prop  Depth (m) Model LS NL N R PS Anis. MR D 

Clay 
0.0 to 0.2 Sph. 50 10 0 345 2400 No - - 

0.2 to 0.4 Sph 50 10 0 440 2500 No - - 

pH 
0.0 to 0.2 Exp. 50 10 0.02 300 0.04 Yes 90 9 

0.2 to 0.4 Exp. 50 10 0 265 0.065 Yes 80 9 

K 
0.0 to 0.2 Exp. 50 10 0.2 260 0.78 Yes 70 9 

0.2 to 0.4 Exp. 50 10 0.2 260 0.8 Yes 120 9 

SEB 
0.0 to 0.2 Exp. 50 10 20 310 80 Yes 150 9 

0.2 to 0.4 Exp. 50 10 10 270 28 Yes 145 9 

CEC 
0.0 to 0.2 Exp. 50 10 20 410 80 Yes 85 9 

0.2 to 0.4 Exp. 50 10 10 470 50 Yes 120 9 

BS 
0.0 to 0.2 Exp. 50 10 10 240 70 Yes 70 9 

0.2 to 0.4 Exp. 50 10 20 330 50 Yes 80 9 

ECa 0.0 to 0.3 Exp. 5 30 0 40 1.1 Yes 10 9 

Prop – property; LS – leg size; NL – number of legs; N – Nugget; R – Range; PS – partial sill; Anis – 
Anisotropy; MR – minor range; D – direction; Sph – spherical; Exp – exponential.  

 



 

Fig.  5. Thematic maps generated by ordinary kriging (OK) of clay (a), pH 
(b), K (c), SEB (d), CEC (e), BS (f) in the layers 0.00 to 0.20m (left) and 0.20 
to 0.40m (right).  

 
Fig.  6. Reduced grid with 20 sampling points (left) selected on the basis of 
thematic map generated by ordinary kriging (OK) of the ECa 0.30m (right). 
 

The first step to perform KED was to determine the regression line between 
the attributes and ECa points in the reduced grid. This step is necessary to 
calculate the data variogram model, which in turn entailed the residual variogram, 
as proposed by Yamamoto & Landim (2013) (Table 4). 

 
Table 4. Best-fitting equations and their coefficients of determination (R2) for 
relating attributes and apparent electrical conductivity in the reduced grid. 
 

 R2 Equation y(x) R2 Equation y(x) 



Depth (m) 0.00 to 0.20 0.20 to 0.40 
Clay 0.5956 33.668*x + 315.16 0.4647 32.240*x + 325.88 
pH 0.3616 0.1228*x + 4.743 0.3681 0.1966*x + 4.283 
K 0.2244 0.4199*x + 0.146 0.4296 0.5420*x - 0.503 

SEB 0.5601 7.8903*x + 1.478 0.4434 2.9375*x + 12.35 
CEC 0.6847 7.6825*x + 31.726 0.2454 3.1152*x + 37.822 
BS 0.6942 5.9538*x + 28.535 0.2723 3.2467*x + 35.291 

 
With the exception of K, the other attributes showed a better fit in the topsoil, 

showing the possibility of ECa measured at 0.30m better reflect the surface layer. 
The pH showed similar results in both layers. The residual variogram was 
calculated as the difference between the variogram of the primary variable with 
the variogram of trend component, been the variogram of the primary variable 
adjusted for the reduced grid points. Special attention was given in the calculation 
of the variogram trend component to find smaller sill than the variogram of 
primary variable, in order to obtain positive residuals. Thus, since it is an irregular 
grid with few sample points, fitting the model to the data needs a prior knowledge 
about the drift or trend of the variables that are being studied. For KED a 
minimum of two and maximum of four neighboring points was used within data 
interpolation (Fig. 7).  

 
Fig.  7. Thematic maps generated by kriging with external drift (KED) of 
clay (a), pH (b), K (c), SEB (d), CEC (e), BS (f) layers 0.00 to 0.20 (left) and 
0.20 to 0.40 (right). 

A comparison of the OK and KED results using Person´s correlation 
coefficient reveals that there is a 50–75% agreement when combined ECa and 
selected soil attributes, with the exception of K. Kappa Index showed a poor 
agreement for BS, SEB and K, fair agreement for CEC e pH and moderate for 
clay. The prediction of soil map using KED generated reliable soil maps, and the 



method appears to deserve more research effort, given the reliability and low cost 
of the resulting information. On the other hand, the estimation of K with a better 
correlation remains a challenge. Moreover, new soil sensors can be integrated 
with the ECa in order to improve spatial distribution estimation of this element. 
 
Table 5. Pearson’s correlation and Kappa Index for the studied attributes in layers 
of 0.00 to 0.20m and 0.20 to 0.40m. 
 

Depth (m) Clay pH K SEB CEC BS 
 Pearson's Correlation 

0.00 to 0.20 0.759 0.739 0.347 0.546 0.545 0.489 
0.20 to 0.40 0.776 0.469 0.564 0.427 0.759 0.444 

 Kappa Index 
0.00 to 0.20 0.356 0.246 0.117 0.160 0.223 0.163 
0.20 to 0.40 0.401 0.136 0.171 0.089 0.230 0.070 

 
CONCLUSIONS 

The spatial distribution of clay and some soil chemical attributes can be 
estimated by kriging with external drift using reduced targeted soil sampling 
based on ECa. We concluded that this kriging technique, which uses dynamic 
secondary information, has the clear advantages of using fewer sampling points, 
even though the Person´s correlation coefficient is not high. To improve 
prediction uncertainties, one can try to add more information using other soil 
sensors in the trend model. This offers good perspective for other attributes that 
need to be estimated over large areas based on a small number of soil samples, 
assisting farmers in crop management and ensuring higher economic returns and 
sustainability of the production system. 
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