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ABSTRACT 
 

     This study intends to examine the potential and advantage of using the red-
edge spectral bands of the forthcoming Vegetation and Environmental New micro 
Spacecraft (VENµS) for assessing field crops Leaf Area Index (LAI). Field 
spectral (continuous) data were collected from experimental plots of wheat and 
potato at the northwestern Negev, Israel, using a field spectrometer. The 
continuous data were resampled to the VENµS bands being used for calculating 
the Red-Edge Inflection Point (REIP) and the Normalized Difference Vegetation 
Index (NDVI) that were compared to these same indices calculated by the original 
continuous wavelengths. The VENµS data were found to be as good predictor of 
LAI as the continuous data. For LAI prediction, the REIP was found to be 
significantly better than NDVI for LAI prediction for the entire dataset and for 
wheat plants particularly. Therefore LAI assessment could potentially be applied 
for future field crops monitoring by VENµS.  
 
 
Keywords: Remote Sensing, Leaf Area Index, Red-edge inflection point, 
VENµS, Field crops.  
 
 
 



 

INTRODUCTION 
 

Leaf Area Index assessment 
 
     Leaf Area Index (LAI) is defined as a simple ratio between the total one side 
leaf surface of a plant and the surface area of the land on which the plant grows. 
Hence LAI is a dimensionless value it is typically ranging from 0 for bare ground 
to 8 for dense vegetation. LAI is one of the most important variables governing 
the canopy processes (Baret et al., 1992) and is related to leaf and canopy 
chlorophyll contents, photosynthesis rate, carbon and nutrient cycles, dry and 
fresh biomass, and growing stages (Aparicio et al., 2002; Baret et al., 1992; 
Clevers et al., 2001; Coyne et al., 2009; Darvishzadeh et al., 2008; Pimstein et al., 
2009; Pu et al., 2003; Ye et al., 2008). Therefore, LAI is applied in plants and 
environmental studies of evaporation, transpiration, light absorption, yield 
estimation, growth stages of crops and chemical element cycling (Aparicio et al., 
2002; Delegido et al., 2008; McCoy, 2005; Moran et al., 2004; Pimstein et al., 
2009). LAI has been estimated in many studies using remote sensing techniques 
in either statistical approaches or canopy reflectance, for agricultural crops as well 
as forests and nevertheless further research of it is recommended (Aparicio et al., 
2002; Asrar et al., 1984; Darvishzadeh et al., 2008; Gitelson, 2004; Kimura et al., 
2004; Pimstein et al., 2009; Pu et al., 2003). A common non-destructive substitute 
for LAI, that is based on reflectance of red (R) and near infrared (NIR) bands, is 
the Normalized Difference Vegetation Index (NDVI). However, the prime 
disadvantage of this method is that the relationship between these two variables 
tends to saturate at LAI > 3 (Aparicio et al., 2002; Coyne et al., 2009), preventing 
LAI assessment in cases of high biomass therefore loosing ability to monitor 
phenological stages that are important for decision making in agriculture. 
Therefore, for better estimation of LAI, including higher LAI values, it is 
proposed to use red-edge inflection point (REIP).  
     The red-edge can be defined mathematically as the inflection point position on 
the slope connecting the reflectance in the R and in the NIR spectral regions 
(Mutanga and Skidmore, 2007; Pu et al., 2003). This steep increase of reflectance 
marks the transition between photosynthetically affected region of the spectrum 
(chlorophyll absorption feature in the R region), and the NIR plateau with high 
reflectance values that is affected by plant cell structure and leaves layers. This 
feature enables a clear representation of the chlorophyll absorption dynamics, 
illustrating a shoulder shifts towards longer wavelengths when the chlorophyll 
content increase, and a shift towards the shorter wavelengths as the chlorophyll 
content decreases (Moran et al., 2004). The position of the red-edge, on canopy 
scale, provides an indication of plant condition that might be related to a variety 
of factors e.g., LAI, nutrients, water content, seasonal patterns, and canopy 
biomass (Blackburn and Steele, 1999; Clevers et al., 2001; Delegido et al., 2008; 
Jorgensen, 2002; Moran et al., 2004; Pu et al., 2003; Tarpley et al., 2000).  Baret 
et al. (1992) modeled canopy scale reflectance using a radiative transfer model 
(SAIL model) concluding that information provided by shifts in the red-edge is 
not equivalent to broad bands R and NIR reflectance. They also concluded for 
canopy scale that shifts in red-edge are mainly produced by chlorophyll 
concentrations and LAI variations. The location of the REIP is also highly 



 

correlated with foliar chlorophyll content and dependant on the amount of 
chlorophyll observed by the sensor (Baret et al., 1992; Darvishzadeh et al., 2008).  
Clark et al. (1995) conducted experiment presenting red-edge shift detection 
obtained by the Airborne Visual and Infra-Red Imaging Spectrometer (AVIRIS), 
a hyperspectral airborne sensor. Multispectral or superspectral sensors that aim at 
high quality precision agricultural implementations should introduce unique 
combination of spectral and spatial resolutions as well as short revisit time with 
the same viewing angle. 
 

Vegetation and Environmental New micro Spacecraft 
 
     Many spectral indices were derived to assess and correlate monitoring 
vegetation variables with the condition of different crops. In recent years, most of 
the high spatial resolution operational satellites (e.g., Ikonos, QuickBird, 
RapidEye, GeoEye) are characterized by a small number of broad spectral bands, 
usually in the blue (B), green (G), R, and NIR.  Due to their high spatial 
resolution, these systems are frequently applied for precision agriculture tasks. 
However, their spectral ability is limited mainly for broad-band vegetation 
indices. In this regard, it is important to mention that the superspectral spaceborne 
system, MERIS, has 15 bands ranging from 390 to 1040 nm with programmable 
bandwidth ranging from 2.5 to 30 nm. The 4 red-edge bands are centered at 
681.25, 708.75, 753.75 and 760.625 nm and commonly set to bandwidths of 7.5, 
10, 7.5 and 3.75 nm, respectively. However, this system is characterized by 
spatial resolution of 300 m that is not suitable for precision agriculture 
applications. The future superspectral satellite Sentinel-2, to be launched in 2013, 
is aiming at environmental applications. It will include 4 red-edge bands centered 
at 665, 705, 740 and 775 nm with bandwidth of 30, 15, 15 and 20 nm, and a 
spatial resolution of 10, 20, 20 and 20 m, respectively. This spatial resolution is 
still not enough for most precision agricultural implementations. The CHRIS 
mode 4 provides 18 bands set to varying bandwidths of 6 to 11 nm. 13 bands are 
located in the red-edge region but the spatial resolution is 17 m.  
Another future superspectral spaceborne system, named Vegetation and 
Environmental New micro Spacecraft (VENµS) will be launched in 2013. This 
system is characterized by high spatial (5.3 m), spectral (12 spectral bands in the 
visible – near infrared), and temporal (2 days revisit time with the same viewing 
angle) resolutions. In this regard, the most notable feature is the availability of 
four bands along the red-edge, centered at 667, 702, 742, and 782 nm with 
bandwidth of 30, 24, 16 and 16 respectively. The satellite will circulate in a near 
polar sun-synchronous orbit at 720 km height and will acquire images with 27 km 
swath. The tilting capability, up to 30 degree along and across track, will provide 
more flexibility enabling to detect targets at up to 360 km off-nadir. All data for a 
given site will be acquired with the same observation angle in order to minimize 
directional effects. Due to these combined unique capabilities, the primary 
objective of this system is vegetation monitoring. Moreover, it will be specifically 
suitable for precision agriculture tasks such as site-specific management that can 
be implemented in decision support systems. 
 



 

Objectives 
 
     This study aims to explore the ability of the VENµS spectral bands to assess 
LAI values, in field crops, with comparison to continuous spectra. This primary 
objective is divided to specific objectives: 

• To find if valid relation to LAI can be obtained by spectral resolution of 
VENµS.  

• Explore the LAI prediction abilities of VENµS bands by the entire spectra 
as well as by REIP and NDVI. 

 
METHODOLOGY 

 
Field Work 

 
     The measurements acquired were ground canopy spectral reflectance and the 
LAI of the plants included in the field of view of the spectral measurements. 
These were obtained in the north-west part of the Negev, Israel, for wheat and 
potato plants in experimental plots. The wheat measurements were conducted 
during two growing seasons, in the winters of 2003-04 (2004) and 2004-05 
(2005), at Gilat Research Center (31° 21’ N, 34° 42’ E).  The potato measurements 
were also conducted during two growing seasons in the autumn of 2006 and the 
spring of 2007, in experimental plots at Kibbutz Ruhama (31°28’ N, 34°41’ E).  
     The measurements in the wheat fields were obtained from around 20 days after 
emergence, until the heading stage around 90 days after emergence (Pimstein et 
al., 2007b). The measurements in the potato field were obtained from around 45 
days after emergence, until around 90 days after emergence.  
     Each spectral measurement was followed by a LAI one. Canopy reflectance 
measurements were obtained using Analytical Spectral Devices (ASD) FieldSpec 
Pro FR spectrometer with a spectral range of 350-2500 nm, and 25o field of view. 
The spectral measurements were collected +/- 2 hours of solar noon, under clear 
skies in nadir orientation. The measurements were collected from 1.5 m above the 
ground, generating an instantaneous field of view of about 0.35 m2. Along the 
season, as the height of the crops increased, the sensor’s distance from the top of 
the canopy diminished from almost 1.5 m to 0.7 m for wheat canopy (Pimstein et 
al., 2007a) and to 0.9-1.3 m for potato canopy (Herrmann et al., In press). The 
height differences are corresponding to a field of view around 0.08 m2 and 0.13-
0.26 m2, respectively. Pressed and smoothed powder of barium sulfate (BaSO4) 
was used as a white reference (Hatchell, 1999) for the potato spectral data 
acquisition and the standard white reference panel (Spectralon Labsphere Inc.) for 
the wheat spectral data collection. The LAI was measured by the AccuPAR LP-80 
device, that was programmed differently according to each crop and location 
based on the operation instructions (Decagon Devices, 2003). Each LAI value for 
data analysis is an average of three readings (replications). The three readings 
were collected from exactly the same location at which the canopy reflectance 
was measured.  
 
 



 

Data Analysis 
 
     The total number of spectral measurements is 466; 150 measurements were 
acquired in the 2004 season, 96 measurements in 2005, 120 measurements were 
obtained in the 2006 season and 100 measurements in the 2007.  The data were 
organized and analyzed in 7 different data sets: each growing season (e.g. 4 data 
sets); each crop (e.g. 2 data sets); and all the data together (e.g. 1 data set). Each 
of the 7 data sets was randomly sorted, and divided to 60% calibration and 40% 
validation. This prediction was implemented by The Unscrambler® software 
v.9.1. 
     The continuous spectral data were resampled to VENµS spectral bands, being 
presented from now onwards as continuous spectra and VENµS spectra, 
respectively. For both data formations, the partial least squares regression (PLSR) 
analysis was applied in order to find out the wavelengths and bands that are most 
influenced by LAI variation. Root mean square error of prediction (RMSEP) of 
LAI was calculated for the continuous as well as the VENµS spectra.  In order to 
know if there is any difference between pairs of correlation coefficient (r) values, 
the “difference tests” was applied using Statistica v.9 software.   
     Two known vegetation indices values, NDVI (Rouse et al., 1974) and REIP 
(Guyot and Baret, 1988), were calculated using both data formations. In Eqs. 1-2, 
ρ stands for reflectance in certain wavelength (the center of the VENµS band) and 
expressed in nanometers.   
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     The indices values were scatter plotted with LAI to provide saturation 
examination as well as in order to obtain the correlation coefficient (r) values for 
linear relation between each of the indices and LAI. LAI prediction by linear 
modeling was applied for both indices calculated by continuous as well as 
VENµS spectra, the RMSEP was used to evaluate the prediction. 
 

RESULTS AND DISCUSSION 
 
     Regression coefficients of the PLSR model are shown (Fig. 1), for both 
VENµS and continuous spectra. It is shown that both data formations have the 
same trend. Furthermore, the red-edge region is the most influenced region by 
LAI variability and gets the highest absolute values, therefore its relation to LAI 
and prediction ability of this region will be farther explored.     
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Fig. 1.  Regression coefficients of the continuous and VENµS spectra 
correlation with LAI (all data) 
 
 
     Table 1 presents the correlation (r) values of predicted LAI, by both data 
formations for the entire spectra, versus the observed LAI. All r-values are 
significant (p<0.05). According to the RMSEP values in Table 1 the VENµS data 
can predict LAI as good as the continuous spectra. The probability (p) values of 
the data formation comparison show similarity or dissimilarity between the r 
values of both data formations. Since all p values (except one) are higher than 
0.05, there is no significant difference in LAI prediction by continuous and or 
VENµS spectra. 
 

Table 1.  LAI prediction by entire continuous and VENµS spectra (466 
samples). All r values are significant (p<0.05). 

Data set VENµS Continuous  Data formation 
comparison 

  r  RMSEP r  RMSEP Probability 
2007 potato 0.73 0.68 0.81 0.47 0.40 
2006 potato 0.81 0.47 0.73 0.54 0.35 
All potato  0.80 0.52 0.72 0.54 0.21 
2005 wheat 0.73 0.82 0.80 0.82 0.49 
2004 wheat 0.91 0.48 0.82 0.79 0.05 
All wheat  0.93 0.68 0.95 0.60 0.24 
All data 0.88 0.70 0.91 0.63 0.15 

 
 
  



 

     Vegetation indices, as NDVI and REIP, can be used for crop estimation. As 
presented in Fig. 2, saturation of the NDVI values and non-saturation of the REIP 
values occurred as expected for both data formations. The saturation begins in 
LAI value of approximately 1.5 that is even smaller than what was expected 
according to the literature. However, NDVI can be an excellent LAI predictor up 
to the LAI saturation. In addition, a small difference exists between the values of 
each index calculated by continuous vs. VENµS spectra. This difference can be 
explained by the bias that exists for the REIP vs. almost no bias for the NDVI 
(Figs. 3 and 4). For both indices, there is a high correlation between indices 
calculated by continuous spectra and by VENµS spectra, r2=0.99 and highly 
significant. Therefore NDVI and REIP calculated by VENµS spectra can perform 
as good as these calculated by continuous spectra.  
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Fig. 2.  Relation of LAI to REIP & NDVI calculated by both data formations 
(466 samples) 
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Fig. 3.  Relation between NDVI calculated by both data formations 
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Fig. 4.  Relation between REIP calculated by both data formations 
 



 

     In calibration data, all correlation (r-values) of NDVI and REIP to LAI were 
significant (Table 2; p<0.05), although some reach only low values (i.e. 2005 
wheat data set by NDVI). It also presents the probability that r-values of the same 
index being the same for both data formations as well as for both indices. For 
example – in the season (data set) of 2007 potato the probability that the r-value 
of REIP calculated by VENµS data (0.70) is the same as the one calculated by 
continuous data (0.69) is 0.89. For the same data set, the probability that the r-
value of REIP (0.70) is the same as the r-value of the NDVI (0.59), both 
calculated by VENµS data, is 0.24. The data formation comparison as well as the 
indices comparison results emphasize that VENµS spectra can provide the same 
quality of relation to LAI as the continuous spectra (Table 2). For the potato data 
sets (2007 potato, 2006 potato and all potato), no significant difference exists 
between NDVI and REIP. For the other data sets that include wheat samples 
(2005 wheat, 2004 wheat, all wheat and all data), the REIP has significant higher 
correlation with LAI than NDVI, in both data formations.  
     LAI prediction in the validation set exhibit similar level of correlation as 
shown by the calibration set, all the r-values are significant (Table 3; p<0.05). The 
RMSEP values of both data formations show advantage for the REIP, except for 
the case of data set 2006 potato by VENµS data. According to Table 3, for wheat, 
REIP has higher LAI prediction accuracy than NDVI. For potato, similar trend is 
shown in several sets, but it was not significant. Using the red-edge data to 
calculate the REIP and the importance of this region (Fig. 1) can explain the REIP 
advantage over the NDVI. Hence, it recommended using the red-edge data for 
LAI prediction. In addition, validation data sets, emphasize that VENµS 
multispectral data can be used for LAI prediction as well as hyperspectral 
continuous spectra data.  
 
 



 

 
Table 2.  Correlation of NDVI and REIP to LAI and probability of equality; calibration data  

Data set r Probability  

 VENµS Continuous Data formation 
comparison Indices comparison 

 NDVI REIP NDVI REIP NDVI REIP VENµS Continuous 
2007 potato 0.59 0.70 0.60 0.69 0.91 0.89 0.24 0.19 
2006 potato 0.55 0.54 0.55 0.55 1 0.91 0.83 1 
All potato  0.57 0.62 0.57 0.63 1 0.86 0.42 0.42 
2005 wheat 0.32 0.76 0.38 0.75 0.64 0.87 0.000 0.000 
2004 wheat 0.71 0.84 0.71 0.85 1 0.76 0.005 0.002 
All wheat  0.77 0.92 0.78 0.92 0.78 1 0.000 0.000 
All data 0.67 0.78 0.66 0.79 0.79 0.69 0.000 0.000 

 
Table 3.  LAI prediction by indices for both data formations and probability of equality; validation data 

Data set r RMSEP Probability 

 VENµS Continuous VENµS Continuous 
Data 
formation 
comparison 

Indices comparison 

 NDVI REIP NDVI REIP NDVI REIP NDVI REIP NDVI REIP VENµS Continuous 
2007 potato 0.50 0.59 0.56 0.69 0.75 0.69 0.84 0.69 0.72 0.47 0.58 0.36 
2006 potato 0.62 0.48 0.66 0.66 0.62 0.68 0.61 0.63 0.75 0.20 0.34 1 
All potato  0.65 0.64 0.53 0.57 0.68 0.66 0.71 0.68 0.23 0.47 0.91 0.71 
2005 wheat 0.36 0.72 0.49 0.84 1.15 0.85 1.31 0.79 0.51 0.20 0.03 0.006 
2004 wheat 0.73 0.84 0.69 0.89 0.96 0.77 0.91 0.56 0.67 0.29 0.12 0.003 
All wheat  0.77 0.93 0.77 0.93 1.14 0.67 1.21 0.74 1 1 0.000 0.000 
All data 0.68 0.81 0.65 0.81 1.14 0.92 1.18 0.93 0.61 1 0.005 0.001 

 



 

 
SUMMARY AND CONCLUSIONS 

 
     In order to examine and evaluate the ability of VENµS spectral bands to assess 
LAI values in field crops two spectral data formations (continuous and VENµS), 
were compared. The relation of the data formations to LAI and prediction of it by 
spectra (continuous and VENµS) as well as by calculated indices (REIP and 
NDVI) were explored by several methods. The PLSR analysis presented the red-
edge as the most sensitive region to LAI variability and therefore the REIP was 
introduced to this study. Simple relation of the indices to LAI was also applied as 
well as prediction of LAI by the entire spectra as well as by the two indices.  
From the results it can be concluded: 

• In the spectral point of view the VENµS spectra is as good as continuous 
spectra for LAI prediction. 

• NDVI calculated by VENµS spectra is related to and can predict LAI as 
good as this calculated by continuous spectra. 

• REIP calculated by VENµS spectra is related to and can predict LAI as 
good as this calculated by continuous spectra. 

• REIP is a better LAI predictor than NDVI for the all wheat data set of this 
study.  

     Farther research should be done in order to find more crops suitable for LAI 
assessment and to establish the conclusions of this study.  Additional study should 
be done also for environmental applications of VENµS spectra and REIP 
calculated by it to predict LAI in natural habitats. 
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