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ABSTRACT 

 
     LAI is one of the most appealing crop measurement required by 
agronomists to develop methods for decision making in agriculture. This study 
presents ways to estimate LAI from indirect measurements, with emphasis on 
the interest of using a 3D representation of canopy architecture as compared to 
more simple 1D models. The work is restricted to gap fraction measurements 
which are now easy to achieve at the ground level. Wheat and vineyard 
contrasted canopies are considered. The 3D models for wheat and vineyard are 
first presented and used to simulate a wide range of canopy architecture under 
several geometrical measurement configurations. Results showed that the 
assumption of random distribution of leaves in 1D models are only applicable 
for a limited sets of observational configurations such as perpendicular to rows 
and with medium to large zenith angles. 3D models have a much larger 
domain of validity. Further, introducing some priori information on canopy 
architecture (such as the row characteristics) improves the performances and 
counterbalanced the increase number of variables required by the 3D models. 
These results primarily derive from model simulations were then validated 
using measurements over actual wheat and vineyard crops. They confirm the 
theoretical findings. 
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INTRODUCTION 

 
Remote sensing is a powerful tool for crop monitoring. Its main interest 

relies on its ability to provide non destructive estimates of some key 
biophysical variables. Several observation systems offer spatial and temporal 
resolution compatible with agronomic management requirements. Spatial 
resolution depends mainly on vectors hosting the sensors. A wide range of 



vectors is used for agricultural applications: handheld systems, tractors, 
airplanes unmanned or not, and satellites.  

Among the biophysical variables accessible from remote sensing 
measurements, leaf area index (LAI) is of particular interest since it controls 
crop growth through light interception, and transpiration while resulting from 
crop development integrated until the measurement date.  

A wide range of sensors and associated methods exist to estimate LAI 
from indirect measurements. They are generally based on canopy reflectance 
(Baret et al., 2007; Moran et al., 1997) or transmittance (Chen and Cihlar, 
1995; Jonckheere et al., 2004). A first class of estimation strategies use 
empirical relationships especially based on spectral indices. Their main 
limitation is their lack of generality and the need for ground calibration to 
account for the multiple other factors influencing reflectance. A second 
approach is based on simple radiative transfer models that simulate canopy 
transmittance or reflectance for a given set of characteristics of the canopies 
including LAI. Model inversion techniques allow then retrieval of these 
biophysical variables from a set of radiometric measurements. However, the 
simplifications and assumptions on canopy structure representation associated 
to these models may lead to inaccurate LAI estimates.  

A powerful way to overcome these limitations is to use three dimensional 
(3D) models. They offer an explicit description of the canopy structure. If the 
first versions were essentially static (Espana et al., 1999), some of them 
recently developed are dynamic. They take into account environmental drivers 
including light and temperature. Computer and hardware efficiency allow fast 
generation of the virtual 3D scenes. At the same time, radiative transfer 
models based on ray tracing or radiosity methods (Disney et al., 2003) have 
been developed to simulate photons’ path in the canopy, for a given 3D scene 
and a given solar configuration. They thus provide very accurate canopy 
reflectance and transmittance simulations.  

This work will focus on gap fraction measurements in the canopy to 
estimate LAI. Gap fraction corresponds to light transmittance in the particular 
case of black leaves. Several devices based on digital photography or light 
sensors working in the blue spectral domain have been developed to measure 
gap fraction. However, the transformation of these measurements into LAI 
heavily depends on canopy architecture. The objectives of this work are to 
show the interest of 3D dynamic models as compared with 1D simple models 
to retrieve LAI in the case of two very different crops: wheat and vineyard. 
The way virtual scenes are generated is first detailed as well as the techniques 
used to compute gap fraction. Then, simulations of gap fraction with a 1D 
model for different viewing configurations are compared with simulations 
with an explicit 3D model. Sensitivity analyses to canopy variables as well as 
measurement configuration are presented for both crops. They allow designing 
optimal configurations and methods to estimate LAI from gap fraction. 
Finally, results from these theoretical considerations are validated using 
dedicated field experiments. 

 
METHODS AND TOOLS TO SIMULATE AND INTERPRET 

INDIRECT MEASUREMENTS  
 

The 1D model: a simplification of the canopy 
 



Most of the devices designed for LAI indirect estimation rely on light 
transmittance measurement through the canopy. LAI is related to the gap 
fraction, Po(θ), for a given view zenith angle θ using the Beer’s law That 
relies on 1D structure description considering the canopy as a turbid medium  
with randomly distributed small leaves: 

 
 [1] 

 
Where k is the extinction coefficient that is calculated as: 
 
  [2] 
 
where G(θs,LIDF) is the projection function, i.e. the mean projection in 

the direction θs of a unit leaf area. LIDF is the Leaf Inclinations Distribution 
Function that may conveniently be approximated by an ellipsoidal leaf angle 
distribution, or calculated from digitised plants.  

 
The wheat 3D model 

 
Adel-wheat (Fournier et al., 2005) is a dynamic architectural model of 

wheat, based on the L-system principles (Prusinkiewicz, 1999). In Adel-
wheat, the phytomer is the basic unit. It consists in a leaf, inserted on a node, 
an internode and a tiller bud. Each phytomer is described by a set of triangles. 
At the stand level, planting pattern is described by a seedling density and an 
inter row distance. From this set of variables, the model describes the size, 
shape, and orientation in space of each organ of a plant population as a 
function of degree days above 0°C. The Adel Wheat model is a package 
included in the OpenAlea platform (Pradal et al., 2008). 

The Adel-Wheat model was calibrated over several experiments (Evers et 
al., 2007). Some of the parameters (leaf blade curvature and orientation in 
space) are stochastic, based on experimental distribution laws.  

From this database, a total of 432 scenes were simulated by varying some 
of the main variables driving wheat canopy architecture. The other variables 
were set to realistic values. Scenes are made of 6 rows of one meter. 

 
 
 
Table 1. Structure parameters for ADEL-wheat model manipulated 

in the simulated scenes. 
 

Parameters (units) Value levels 
Thermal time (°C.d)  400, 600, 800, 900, 1000, 1200 
Plant density (plant/m2) 150, 300, 500 
Number of tiller per plant 2, 4 
Distance between the top of tiller 
and main stem (cm) 

3, 6 

Height of plant low, medium, high 
Leaf inclination distribution (drawn 
from actual measurements) 

plagiophile, erectophile 



 
The vineyard 3D model 

 
A geometrical approximation has been considered to represent actual 

vertically-trained vineyards. The proposed model describes the vineyard rows 
as parallelepiped prisms, assuming that leaf distribution inside the row is 
homogeneous. These rows are defined by width W and height H, and are 
separated from a distance Drows. Trunks are represented by eight triangles with 
a height Htrunk and a distance Dplants along the row (Fig. 1). 
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Fig. 1. An example of a vineyard 3D scene. 
 
The leaves are represented by isosceles triangles with a base of 10 cm and 

a height of 15 cm. The LIDF follows an erectophile distribution and the 
number of leaves within the rows is determined by canopy LAI. 

Although more detailed models of vineyard architecture can be found in 
literature (Louarn et al., 2005), representing the leaves grouped in branches 
and following a given trajectory, the geometrical approach proposed 
constitutes a good compromise between realism and the ease of use, since it 
requires a limited number of input variables. 

The proposed model was used to create a total of 3420 scenes combining 
orthogonally the possible variations in the field of the above mentioned input 
parameters. This experimental plan comprises an extreme range of canopy 
characteristics: from 1D description when W=Drows=1.5 to highly clumped 
canopies (Drows=4; W=0.3). 

 
Computation of gap fractions from 3D scenes 

 
LAI is defined as half the total developed area of green leaves per unit 

horizontal ground area (Chen and Black, 1992). Calculated LAI is the sum of 
the leaves’ one sided triangles areas. Note that for most of the sensors, only 
PAI (Plant Area Index) is accessible as no discrimination can be done between 
leaves and the other canopy elements. PAI includes half the developed area of 
the branches, stems and reproductive organs. The green area index (GAI) 
considers only the area of green elements. For the simulations considered here, 
PAI = GAI since senescence is not represented. 

Gap fraction (P0) calculation is computed using the Z-buffer technique 
(Chelle, 1997). It consists on an orthogonal projection of the scene onto a grid. 



Each pixel value is the depth of the triangle on the grid. P0 is calculated for the 
scene as the ratio between maximum depth (soil pixels) and the total amount 
of pixels of the grid. To avoid border effects, scenes are replicated infinitely 
(Chelle et al., 1998). 

In the case of vineyard canopies, P0 was calculated from 0° to 85° in 
zenith directions and from 0° to 90° in azimuth directions (0° equals to rows 
direction) using the Z-buffer technique. P0 values were integrated in sectors 
trying to mimic the optical configurations available in LAI2000 instrument. 
LAI2000 is equipped with 5 concentric sensors with an IFOV of 15° in zenith, 
centred at 7.5°, 22.5°, 37.5°, 52.5° and 67.5° and 360° in azimuth. However, 
azimuth viewing can be constrained using two caps that limit the IFOV to 90° 
and 45° around to a specific direction. Fifteen optical configurations were thus 
reproduced from P0 simulations: the five concentric rings of LAI2000 by 3 
azimuth amplitudes: IFOV of 360°, and 90° and 45° centred to direction 
perpendicular to rows. 

 
DIFFERENCE BETWEEN 1D AND 3D FOR GAP FRACTIONS 
 
To show the importance of canopy architecture effects on the 

interpretation of indirect measurements, comparisons between the 1D 
simulations and a realistic 3D model are presented below for wheat and 
vineyard. 

 
The case of a wheat canopies 

 
From each 3D scene, PAI and LIDF were calculated. Both information 

were used to simulate Po with the 1D model for two viewing configurations: 
(i) a viewing azimuth angle of 57.5° parallel to the rows direction; (ii) a 
viewing azimuth angle of 57.5° perpendicular to the rows direction.  

Comparison between both models simulations (Fig. 2) shows that the 1D 
model fails to represent accurately some viewing configuration. In particular, 
when the viewing azimuth angle is parallel to the row, the turbid medium 
assumption is not fulfilled. On the other hand, a good agreement is observed 
between the 1D and 3D models when the azimuth is perpendicular to the rows. 
This is the optimal condition to use the 1D model. 
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Fig. 2. Comparison between simulated gap fractions from the 1D 

model and the 3D Adel Wheat model for 2 viewing configurations with a 
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viewing zenith angle of 57.5°: in blue azimuth is parallel to the rows 
direction and in red it is perpendicular to the rows 

 
The case of vineyard 

 
The discontinuity of vineyard canopies invalidates the application of 1D 

assumption to establish the relationship between LAI and intercepted light. As 
it can be appreciated in Fig. 3a, the actual gap fraction of vineyard canopies 
(P0 3D) presents large differences with that of the 1D canopy with the same 
LAI (P0 1D).. The effect of the canopy discontinuity limits the sensitivity of 
P03D to LAI (Fig. 3c), and enhances the contribution of other architectural 
variables such as rows width and height. In other words, light transmission is 
not determined only by the amount of leaf area, but also on the way leaves are 
distributed in the canopy. 

Measurement direction is another factor that drives transmittance values. 
For directions close to zenith and/or parallel to rows direction (Figure 3a and 
3c), the effect of canopy architecture is the largest. For directions 
perpendicular to the rows and far from zenith, the 1D description approach 
may be valid (Fig. 3b). 

The contribution of canopy architecture variables other than LAI or LIDF 
such as row dimensions and height should be explicitly considered and if 
possible introduced in the inversion process. 
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Figure 3. Top figures (a, b): distribution of P0 values simulated with 
the 3D vineyard model against P0 of an equivalent canopy in 1D model. 
Bottom figures (c, d): relationship between P0 simulated by the 3D model 
and LAI. Two geometrical configurations of the LAI2000 instrument 
were considered: on the left all azimuth are considered, but zenith is 
restricted to the 15°-30° range. On the right azimuth are restricted to 
directions ±22.5° perpendicular to the rows. 

 
 

VIEWING CONFIGURATION OPTIMIZATION AND ASSOCIATED 
ESTIMATION METHODS: FROM SIMULATIONS TO THE FIELD 

 
LAI estimate from single direction gap fraction measurement on wheat 

 
Calibration of a relationship between PAI and gap fraction at 57.5° 

 
Wilson (1963) demonstrated that the projection function can be 

considered as independent of leaf inclination at θs=57.5°. G(θs) is almost 
constant and equals 0.5.  

 
In this configuration, PAI can be retrieved from  using a simple 

equation (Weiss et al., 2004): 
 
   [3] 
 
The gap fraction computed over the 432 simulated wheat canopies were 

related to the corresponding PAI values. Fig4 a shows that the particular 
configuration considered at 57.5° zenith angle and perpendicular to the rows 
minimizes all the sources of variability of canopy architecture introduced in 
the simulated scenes according to table 1. Very little scatter is observed 
around the best fit curve adjusted with the simplex optimization method 
(R²=0.97; RMSE=0.014): 

 
 [4] 

 
In this case, the use of 3D models allows defining an appropriate viewing 

configuration and a unique relationship between an indirect measurement, the 
gap fraction at 57.5°, and a biophysical variable, the PAI. It should however 
be noted that this relation presents a saturation effect for PAI greater than 3 to 
4: application of this equation for more developed crops may lead to 
inaccurate results. 

 
Field experiment 

 
Three experiments were conducted in Boigneville, France (47.33° N; 

2.38° E) from 2006 to 2008 resulting in a total of 28 measurements. Seven 
wheat cultivars (Triticum aestivum) and one triticale cultivar (Triticosecale) 
were sampled over plots at several stages from sowing to earing. The 
investigated plots were very homogeneous microplots of about 2 m width by 
10 m long. Destructive LAI was measured by collecting all the plants over 
50x50 cm² samples for the earlier stages and on 100x34 cm² for the latter 



ones. The area of stems and ears per unit soil area was also measured to 
compute the PAI.  

Pictures were taken with a Nikon D40 hosting a 23.7 x 15.6 mm CCD 
matrix of 6.24 million pixels, and equipped with a 35mm focal length lens. 
The 57.5° zenith angle was obtained using a platform inclined at 57.5° bearing 
a bubble level. Pictures sampled the centre of the plot perpendicularly to the 
rows so that approximately the same canopy volume was sampled by the 
photo and by the destructive method. A binary classification of green elements 
and gaps (including soil and senescent elements) was then performed to 
compute the gap fraction at 57.5°. The Can-eye freeware was used to achieve 
the classification) based on the colour space. 

 
 

 
 
Fig. 4. a) Relationship between gap fraction at 57.5° and PAI simulated 
from ADEL-wheat. The thin solid line corresponds to the best exponential 
fit (equation [4]). The thick solid line corresponds to the theoretical 
relationship of equation [3]: .  
b) Comparison between destructive  measurements and estimates of 

 from P0(57.5°) measurements and equation [4]. Filled circles 
correspond to stages before stem elongation while empty circles represent 
measurements at flowering stage. 

 
 

Results 
 
GAI estimated from gap fraction measured at 57.5° using equation [2] 

calibrated with the 3D ADEL-wheat model simulations is strongly correlated 
to destructive PAI from the 28 field measurements (Fig. 4b), with a RMSE of 
0.22. Using equation 1 from 1D model degrades the RMSE to 0.39. The 
independency of the method from architecture effects is thus well 
demonstrated over a range of cultivars with contrasted leaf inclinations, at 
different stages and level of PAI. 

 
LAI estimation in vineyard canopies from hemispherical photography 

 
Optimal viewing configuration and neural network training 
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A unique relationship cannot apply for all architectures simulated for 
vineyard. In this case, the dataset of gap fraction simulations on 3D vineyard 
canopies previously described were used to train artificial neural networks 
(ANN) to estimate LAI from observed P03D values following different 
configurations of the LAI2000 instrument. A total amount of 60 ANNs, as it 
results of combining the simulated P03D observations with 1 to 4 adjacent 
rings at the same time multiplied by 1 to 3 adjacent azimuth fields of view: 
360°, 90° and 45° perpendicular to rows and 2 types of training datasets: with 
and without architectural information. In the training dataset without 
architectural information (from now ‘non architectural’, only simulated P03D 
data was used for the training of ANNs, with LAI as the target. Thus the 
length of the input vector in the training process would vary from 1 (1 ring) up 
to 4 (4 rings used at the same time with 1 cap).  

In the training dataset with architectural information (from now 
‘architectural’) P03D simulated data were introduced as well as  the respective 
relative row dimensions H/Drows and W/Drows in the virtual scenes and LAI as 
target variable. The values of P03D and row dimensions used for ANN 
training were contaminated with a random white noise assuming error 
measurements of gap fraction and uncertainties on row dimensions. A 
classical feed-forward network with one hidden layer made of 5 tangent 
sigmoid transfer function neurons and one output layer with 1 linear transfer 
function neuron was selected for this purpose. Levenberg-Marquardt 
algorithm was used for the training process. The software used in this process 
was Matlab package (Mathworks Inc, USA). 

 
Field experiment 

 
Two experimental field plots of vineyard (cultivars Grenache and Syrah) 

were selected at Chateauneuf de Gadagne (43.55ºN, 4.16ºE) within the Rhone 
Valley at south-eastern France. The planting pattern ranges from 2.25-2.5 m. 
between rows and from 1 to 1.23 meters between plants. A total of four 
transects were carried out with series of 10 hemispherical photographs 
covering the inter row spaces at flowering, veraison and vintage phenological 
stages. The camera used was a Nikon Coolpix 4500 digital camera equipped 
with a fisheye lens. The series of hemispherical digital images were 
downloaded and processed with CAN-EYE software to calculate the gap 
fraction. In the processing of hemispherical photographs, only zenith 
directions from 0° to 60° were considered, since above 60° from zenith the 
lack of resolution in the photograph limits the accuracy of the gap fraction 
retrieval. Values of P0 were integrated in crown sectors mimicking the optical 
configurations of LAI2000 instruments.  

After the acquisition of each series, 21 primary axes -equivalent to 3 
complete plants- were selected randomly at each transect. The axes were cut 
and defoliated and their leaf area was measured using a planimeter. The width 
and height of the rows at the same locations were also manually determined. 

 
Results 

 
Observed values of P0 in the hemispherical photographs were introduced 

in the ANNs described above. In the case of ANN with ‘architectural’ training 
dataset, the row dimensions measured in the field were also introduced to 



produce LAI estimations. ‘Effective LAI’ was also calculated using CANEYE 
software from hemispherical photographs.  
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Fig. 6. RMSE of LAI estimation with ANN using ‘architectural’ 

and ‘non architectural’ training datasets over actual vineyard canopies. 
The results are ranked from the lowest to the highest RMSE in each 
case, and the corresponding optical configuration is described in bars. 

 
When no architectural information is introduced in the training process, 

the optical configurations that provide better results are those including ring 4 
and caps 2 and 3. Although different rings combinations appear among the 
best performances in LAI estimation, the introduction of azimuth constraints 
greatly enhances LAI estimation while the configurations including cap 
number 1 provide systematically poorer performances. Excluding azimuth 
directions parallel to the rows from the estimation process limits the 
contribution of architectural parameters while enhancing the sensitivity to 
LAI.  

When canopy architecture information is introduced in the model 
inversion process, the performances in LAI estimation are greatly enhanced: 
overall RMSE is substantially improved (Figure 7).  

Finally, the performances of ANN estimations were compared against 
‘effective LAI’ estimations assuming 1D model (Fig. 7). Effective LAI is 
systematically than the observed LAI values, with a RMSE of 0.97. The 
assumption of a random leaf spatial distribution in 1D model is obviously 
violated in the case of row crops. 
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Fig. 7. Comparison between destructive and estimated LAI by ANNs 

and CANEYE. Non architectural  and architectural ANN refers here only 
to the best ranked configuration on each category.  

 
The results of the present experiment suggest the need of using specific 

optical configurations to estimate LAI on vineyard canopies to mitigate the 
effect of uncertainties associated to canopy architecture parameters in relation 
between LAI and intercepted light. Moreover, architecture 3D models in the 
description of light-canopy interactions has been proved their usefulness in the 
particular case of vineyard canopies, enhancing the sensitivity of intercepted 
light to LAI and limiting the influence of other architecture parameters. 

 
CONCLUSIONS AND PERSPECTIVES 

 
This work presents the simulations of 3D architecture of wheat and 

vineyard canopies, from a limited set of parameters. The interest of this 3D 
modelling over the generally used 1D model was demonstrated from 
simulations and validated over experimental data. Optimal viewing 
configurations and associated estimation algorithms were derived from a set of 
simulated canopies showing a large range of architectures. 

This analysis for two crops with contrasted architectures allowed defining 
the conditions of application of the 1D model: it requires that light passes 
entirely through the canopy, avoiding large gaps between rows and between 
plants in the rows. This is only achieved for directions far from zenith and 
perpendicular to rows. This is a key point for younger stages of development 
in the case of wheat. It is even critical for vineyards. However, a trade off is to 
be found between the saturation effect enhanced at oblique view angles and 
the fulfillment of 1D hypotheses that is rarely satisfied with a nadir view 
angle, except for dense and well developed crops. Combining several view 
zenith angles is mandatory to alleviate both limitations.  

This study also demonstrated the benefit of introducing prior knowledge 
such as row dimensions on canopy architecture in the model inversion process. 
Using prior information on canopy architecture allows using more realistic 
models while compensating for their increased complexity and number of inut 
variables which is critical in a model inversion process.  



Inversion procedures to derive biophysical variables from indirect 
measurements presented in this paper are not covered exhaustively. Multiple 
techniques are possible: (i) the easiest is to establish a specific calibration like 
in the case of wheat presented above and more developed in (Baret et al., In 
press); (ii) (Casa et al., 2010) minimizes a cost function for parameter 
estimation; (iii) artificial neural network training is presented in the present 
article. See also (Lopez-Lozano et al., 2009); (iv) look up tables (LUT) have 
been successfully applied with reflectance (Knyazikhin et al., 1998) and gap 
fractions (Garrigues et al., 2008; Weiss et al., 2004). This is a flexible way to 
account for heterogeneous sources of data. 

Although the present study focused on gap fraction, the conclusions can 
be extrapolated to canopy reflectance, since light transmittance is one of the 
main components of the radiative transfer models used to compute canopy 
reflectance. In particular, the effects of sun-target-sensor geometry and row 
dimensions can largely affect biophysical parameters estimation.  

Effective systems for crop monitoring are likely to require multiple types 
of sensors to increase the amount of information on the canopy. The synergy 
between radiometers, cameras, lidars or radars can therefore be exploited and 
an explicit description of canopy structure allows an optimal combination of 
these data. This approach may solve the well known ill posed problem 
mentioned by (Combal et al., 2003) when estimating simultaneously LAI and 
leaf chlorophyll content from reflectances.  

Some questions are still open concerning architectural models. (Lewis, 
2007) identifies two questions about the use of structural functioning models 
in remote sensing: (i) what is the impact of the level of detail for the 3D 
description and (ii) how species dependants are the 3D models? They should 
be addressed in the next years, with the development of more detailed 
architectural representations (including for instance leaf twist and undulation) 
and the integration of other structural crop models in platforms such as 
OpenAlea. 
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