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Abstract. Corn production across the U.S. Corn belt can be often limited by the loss of 
nitrogen (N) due to leaching, volatilization and denitrification. The use of canopy 
sensors for making in-season N fertilizer applications has been proven effective in 
matching plant N requirements with periods of rapid N uptake (V7-V11), reducing the 
amount of N lost to these processes. However, N recommendation algorithms used in 
conjunction with canopy sensor measurements have not proven accurate in making N 
recommendations for many fields of the U.S. Corn Belt. The objective of this research 
was to determine if soil and weather information could be used to make the University of 
Missouri canopy reflectance sensing algorithm more accurate. Nitrogen response trials 
were conducted across eight states over two growing seasons, totaling 32 sites (four 
per state) with soils ranging in productivity. Reflectance measurements at ±V9 were 
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used with the University of Missouri canopy sensor algorithm to calculate an in-season 
N fertilizer recommendation. This recommendation was related to the economic optimal 
N rate (EONR). The University of Missouri algorithm was only mediocre in predicting 
EONR, averaging within 74 kg N ha-1 of EONR when target corn received 45 kg N ha-1 
at-planting. However, when this algorithm was adjusted using weather and either 
measured or USDA SSURGO soil properties the suggested N fertilizer recommendation 
improved. The error as determined by the root mean square error (RMSE), for corn 
receiving 45 kg N ha-1 at-planting the RMSE was 74 kg N ha-1 without soil and weather 
and 52 kg N ha-1  with the soil and weather adjustment. This suggests the incorporation 
of soil and weather information into other canopy sensor algorithms may enhance their 
accuracy at predicting site-specific EONR. 

 
Keywords. Missouri, Canopy Sensor, Corn, Nitrogen, Algorithm, Adjustment.   
 

 

Introduction 
Efficient nitrogen (N) management in corn (Zea mays L.) is critical for increasing grower profits 
and preventing environmental pollution. Fertilizer applications that match end-of-season 
measured economic optimum N fertilizer rate (EONR) can reduce N loss while protecting 
grower profits and the environment (Scharf et al., 2002; Roberts et al., 2010; Scharf et al., 
2011). However, between- and within-field spatial variability of soil characteristics and variation 
in year-to-year weather factors make it difficult to determine the right amount of N fertilizer 
needed early in the season to match EONR.  

Crop canopy reflectance sensors capture plant condition information (greenness and biomass) 
from small areas within fields and therefore can assess spatially-variable N requirements. Such 
a diagnostic tool therefore can aid in recommending the correct amount of N fertilizer applied to 
reach optimal yields (Scharf et al., 2002; Kitchen et al., 2010; Barker and Sawyer, 2010; Scharf 
et al., 2011). Unlike soil- or tissue-test based in-season N fertilizer recommendations, canopy 
sensors are directly mounted to a fertilizer applicator making it possible to collect reflectance 
data and apply variable N fertilizer in an on-the-go operation.  

Canopy sensor algorithms are the mathematical expressions used to transform reflectance 
readings into an in-season N fertilizer recommendation. The unique growing conditions and 
environments these algorithms were developed for may limit their universal adoption.  

Financial benefits have been documented by using the MU algorithm to synchronize the 
application of N fertilizer with corn N uptake. Fifty-five on-farm trials during 2004 to 2008 were 
conducted in Missouri where canopy sensing was used to inform topdress N fertilizer application 
rates (Scharf et al., 2011). Sensing N applications were then compared to a fixed rate that 
producers’ used on these same fields. Across all fields, canopy sensors increased partial 
grower profits by an average of $42 ha-1 over producer rates. However, the MU algorithm’s 
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performance on a regional scale across the U.S. Cornbelt was mediocre. The question 
considered here is, could the performance of the algorithm be improved by incorporating into 
the algorithm soil or weather information.  

Weather factors such as precipitation and temperature generally drive plant growth and 
influence soil conditions (Tremblay and Bélec, 2006), which ultimately influence corn yield. 
Monthly rainfall has been proven to effect corn yield variability (Teigen and Thompson, 1995). 
Nitrogen response across North America was found to be most affected by precipitation during 
June and July, as well as by temperatures during July and August (Jeutong et al., 2000). Some 
have identified the distribution or evenness of rainfall as being significant in describing 
responsiveness to N fertilizer, thus affecting yield (Shaw, 1964; Reeves et al., 1993; Tremblay 
et al., 2012). For example, frequent rainfall events were observed in 51 studies from 2006 to 
2009 in several North American locations and were explained to have high soil moisture early in 
the growing season that promoted N loss through denitrification and leaching, as well as 
increased responsiveness to N fertilizer (Tremblay et al., 2012). Rainfall and temperature are 
generally accepted as metrics directly impacting yield-limiting soil factors of oxygen levels, 
biological activity, decomposition of organic matter to soil mineral N, nutrient availability, plant 
available water (PAWC), and ultimately crop yield (Power et al., 2001; Tremblay, 2004; 
Tremblay and Bélec, 2006; Kyveryga et al., 2007; Shanahan et al., 2008; Tremblay et al., 2012).  

Spatially-diverse soil properties at sub-field to regional scales are key to understanding crop N 
needs. Soil texture, soil organic matter (SOM), and PAWC combined with varying total rainfall, 
the evenness of rainfall, and temperature, contribute to the complexities of N fate in crops and 
the environment (Power et al., 2001; Tremblay et al., 2004). Multiple N loss processes and 
pathways can exist in any given field. Significant denitrification (the conversion of NO3

- to N0x 
and N2 gases) most often occurs in clayey textured soils experiencing anaerobic soil conditions 
from excessive rainfall and with warm soil temperatures (Blevins et al., 1996). In contrast, NO3

- 
leaching below the rooting depth results when high amounts of rainfall occur and is more 
pronounced on soils with low water holding capacity or coarse textured soils (Power et al., 
2001). Volatilization, (the loss of N through ammonia-NH3 gas), may also occur if certain N 
fertilizers, such as urea, are not incorporated into the soil (Ma et al., 2010). These weather-soil 
interactions result in varying field conditions, suggesting the need for targeting of N 
management to match these variations. Research is needed to decide if and how these soil and 
weather variables can improve N fertilizer recommendations to help match EONR.    

Soil information can be obtained from different sources. Through the USDA-NRCS Soil Survey 
Geographical database (SSURGO), the most used conventional soils database in the United 
States (Yang et al., 2011), most of the previously mentioned soil variables can be obtained. The 
accuracy and precision of SSURGO information is affected by mapping techniques, the level of 
spatial detail, and the exactitude of soil attributes (Zhu, 1997; Zhu et al., 2001). Efforts to verify 
SSURGO reports with actual soil measurements have given contradictory results. Field-truthing 
of SSURGO reports on the Hunewell ranch in Erath County, Texas showed poor relationships 
between SSURGO estimated soil texture and pH to actual samples (Zylman et al., 2015). 
Variation between SSURGO and the collected samples was greatest in erosional areas and 
transitional areas between SSURGO mapping units.  

The objective of this research was to determine if soil and weather information could be used to 
inform the MU canopy sensor algorithm in making a better-performing in-season N fertilizer 
recommendation. Sub-objectives of this research were to compare algorithm performance with 
weather and soil information for 1) two different target N fertilizer rates; and 2) when employing 
SSURGO soil information versus actual within-field soil measurements. 
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Materials and Methods 

Research Sites and Locations 
This research was conducted as part of public-private collaboration between eight major land-
grant universities (University of Iowa, University of Illinois, University of Indiana, University of 
Minnesota, University of Missouri, North Dakota State University, University of Nebraska, and 
the University of Wisconsin) within the US Corn Belt and DuPont Pioneer. This project is 
commonly referred to as the, “Performance and Refinement of Nitrogen Fertilization Tools” 
project. The approach for this research was fundamental N fertilizer response field-plot studies 
conducted with standardized protocols and methods across a wide range of soil and weather 
conditions. Yield and soil measurements from these plot studies provided both the 
measurements needed as well as N response functions.   

Thirty-two corn N response trials were conducted during 2014 to 2015 in eight Midwestern Corn 
Belt States. In each state, two sites ranging in productivity were selected for each growing 
season, giving four sites per state (Figure 1.1). Productivity was determined by historical yield 
and general soil productivity. Research sites were planted at a target population of 86,450 
plants ha-1 using Pioneer hybrids (DuPont Pioneer, Johnstown, IA) best  suited for the selected 
sites within the region. Most research sites followed soybean, however four sites followed corn. 
The MN New site and the IA Mason site were tiled drained. NE sites were irrigated. All but three 
sites received at least some form of tillage. Planting dates ranged from April 19 – May 23 and 
topdress/sensing dates ranged from June 7 – July 10. Descriptions of management for all sites 
are presented in Tables 1.1 and 1.2.  

 

Figure 1.1. Field research sites were located within eight U.S. Corn Belt states (Iowa, Illinois, Indiana, Minnesota, Missouri, 
Nebraska, North Dakota, and Wisconsin). Each state contained two sites for two growing seasons (2014 - 2015), totaling 32 
sites. The 2014 sites are represented by yellow circles while the 2015 sites are represented by white stars. 
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Table 1.1. Management description for the 16 sites for the 2014 growing-season. Each of the eight participating states chose two sites that contrasted in productivity 
within the state. 
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        seeds/ha cm    
IA Ames Low SB No No FC P0987AMX 87,685 76 7 May 26 Jun V9 

IA Mason High SB Yes No No-till P0636AMX 86,450 76 9 May 9 Jul V9 

IL Brown1 Low SB No No FC P1498AM 79,040 76 24 Apr 13 Jun V8 

IL Urbana1 High SB No No FC P1498AM 86,450 76 25 Apr 15 Jun V8.5 

IN Loam1 High SB No No F chis/SP FC P0987AMX 81,510 76 19 May 27 Jun V9 

IN Sand1 Low SB No No F chis/SP FC P0987AMX 81,510 76 19 May 27 Jun V9 

MN New1 High SB Yes No - P9917AMX 85,215 76 21 May 7 Jul V9 

MN Charles1 Low SB No No Vertical-till P9917AMX 85,215 76 16 May 8 Jul V10 

MO Bay Low SB No No FC P1498AM 86,450 76 2 May 20 Jun V10 

MO Troth1 High SB No No No-till P1498AM 86,450 76 2 May 21 Jun V10.5 

ND Amenia1 High Corn No No F chisel/ FC P8954AM1 79,040 56 23 May 10 Jul V8.5 

ND Durbin1 Low Corn No No F chisel/FC P8954AM1 79,040 56 23 May 10 Jul V8.5 

NE Brandes1 Low SB Yes Yes No-till P1151HR 86,450 76 19 Apr 26 Jun V9 

NE SCAL1 High SB No Yes No-till P1151HR 79,040 76 7 May 24 Jun V8.5 

WI Steuben High SB No No No-till P0636AMX 86,450 76 7 May 25 Jun V9 

WI Wauzeka Low SB No No No-till P0636AMX 79,781 76 6 May 25 Jun V9 

†FC, field cultivated; F, fall; Chis, Chisel; SP, spring. 
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Table 1.2. Management description for the 16 sites for the 2015 growing season. As done previously, each of the eight participating states chose two sites ranging in 
productivity of the 2015 growing season.  
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        seeds/ha cm    
IA Boone Low SB No No FC P0987AMX 86,450 76 18 May 7 Jul V10 

IA Lewis High SB No No FC P1498AM 85,215 76 29 Apr 7 Jul V10 

IL Brown2 Low SB No No SP FC/ F deep ripped P1498AM 86,450 76 28 Apr 16 Jun V9 

IL Urbana2 High SB No No FC / F deep ripped P0987AMX 86,450 76 23 Apr 15 Jun V9 

IN Loam2 High SB No No FC P0987AMX 80,275 76 29 Apr 17 Jun V10 

IN Sand2 Low SB No No No-till P0987AMX 80,275 76 29 Apr 17 Jun V10 

MN New2 High SB No No F FC/ SP FC P0157AMX 87,685 76 18 Apr 26 Jun V8 

MN Charles2 Low SB No No Vertical-till P0157AMX 85,215 76 1 May 1 Jul V9 

MO Lonetree Low SB No No FC P1498AM 86,450 76 17 Apr 19 Jun V9 

MO Troth2 High SB No No FC P1498AM 86,450 76 14 Apr 10 Jun V9 

ND Amenia2 High Corn Yes No No-till P9188AMX 83,980 56 24 Apr 14 Jun V5 

ND Durbin2 Low Corn No No No-till P9188AMX 83,980 56 24 Apr 18 Jun V6 

NE Brandes2 Low SB No Yes F chisel/ SP FC P1151HR 86,450 76 19 Apr 29 Jun V9 

NE SCAL2 High SB No Yes F chisel/ SP FC P1151HR 83,980 76 24 Apr 24 Jun V8 

WI Belmont Low SB No No No-till P0987AMX 90,155 76 4 May 1 Jul V9 

WI Darling High SB No No No-till P0987AMX 93,119 76 4 May 1 Jul V9 

†FC, field cultivated; F, fall; Chis, Chisel; SP, spring.
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Plots and Treatments 
Plot dimensions were state and site dependent and were determined by the planting (planter 
width) and harvesting (combine width) equipment available, but minimal plot harvest area was 
18.6 m2. Average research area size per site was 0.4 ha. Sixteen different N rate treatments 
replicated four times (totaling 64 plots per site) were used in a randomized complete block 
design (Table 1.3). Nitrogen treatments were obtained using dry-prilled NH4NO3-N fertilizer 
broadcast applied. The “at-planting” fertilizer was applied within 48 hours of initial planting while 
the topdress fertilizer was applied between the eighth and tenth leaf. Treatment one was the 
non-fertilized control. Treatments 2 to 8 received all N at-planting in 45 kg N ha-1 increments 
from 45 to 315 kg N ha-1, while treatments 9 to 14 received 45 kg N ha-1 at-planting and the rest 
at topdress in 45 kg N ha-1 increments from 45 to 270 kg N ha-1. Treatments 15 and 16 received 
90 kg N ha-1 at-planting with the remaining N at topdress.  

 

Table 1.3. Sixteen different N fertilizer rates split over two times were replicated four times at each site.   

Trt # Planting N Topdress 
N Total N 

 —————kg ha-1—————— 
1 0 0 0 
2 45 0 45 
3 90 0 90 
4 135 0 135 
5 180 0 180 
6 225 0 225 
7 270 0 270 
8 315 0 315 
9 45 45 90 
10 45 90 135 
11 45 135 180 
12 45 180 225 
13 45 225 270 
14 45 270 315 
15 90 90 180 
16 90 180 270 

 

Canopy Sensing 
Reflectance measurements were collected using the RapidSCAN CS-45 (RS) Handheld Crop 
Sensor (Holland Scientific, Lincoln, NE) just prior to topdress application (growth stage V8-V10 
leaf stage). Manufacturer recommendations were followed during initial canopy sensor setup. 
The sensor was held approximately 60 cm above the row as the operator steadily walked 
approximately 4 kph alongside the row. Only plot rows used for yield measurements were 
sensed. While the RS uses three different wavelengths of light, red (670 nm, VIS), red edge 
(730 nm, RE), and near-infrared (780 nm, NIR), only VIS and NIR were utilized in calculating 
vegetative indices for the N recommendation algorithms tested in this study.  
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Algorithm  
The MU algorithm tested was an equation developed for the V8-V10 growth stage (Scharf et al., 
2011). The vegetative index used in this algorithm is the Inverse Simple Ratio (ISR) and is 
defined as: 

𝐼𝐼𝐼 = 𝑉𝑉𝑉
𝑁𝑉𝑁

          [1] 

where VIS = reflectance of the visible wavelength, and NIR= reflectance of the near infrared 
wavelength. Measurements were taken to obtain ISR values from both N reference corn 
(ISRreference) and target corn (ISRtarget). The N recommendation was then calculated as follows: 

𝑁𝐼𝑁𝑁𝑀𝑀 = �280 𝑘𝑘 𝑁 ℎ𝑎−1 × 𝑉𝑉𝑁𝑡𝑡𝑡𝑡𝑡𝑡
𝑉𝑉𝑁𝑡𝑡𝑟𝑡𝑡𝑡𝑟𝑟𝑡

� − 224 𝑘𝑘 ℎ𝑎−1 [2]  

where 𝑁𝐼𝑁𝑁𝑀𝑀= the recommendation in kg ha-1.  

One complication was this recommendation algorithm was developed with the Holland 
Scientific’s Crop Circle 210 (CC-210), an earlier sensor model than the RS used in this study. 
The CC-210 sensor employed slightly different reflectance wavelengths than the RS. Thus in 
order to test this algorithm, reflectance measurements gathered with the RS had to be 
converted to equivalent CC-210 measurements. Simultaneous measurements from these two 
sensors were taken on V8-V10 corn stands over several growing seasons (unpublished data) 
and found related in the following way:  

𝐼𝐼𝐼 = 0.454 + ln(𝐼𝐼𝐼𝑁𝑉) × 0.125    [3] 

where ISR= Inverse Simple Ratio needed for the MU algorithm, and ISRRS = Inverse Simple 
Ratio of the RS. Once RS values were transformed into equivalent CC-210 values, the 
recommendation could be determined using Eq. [2]. 

Reflectance Measurements for Recommendations 
Nitrogen application treatments used to calculate an average site level N-rich reference were 
those that received 135, 180, and 225 kg N ha-1 at-planting (Treatments 4, 5, and 6 in Table 1.3; 
n=12). The exception was the Lonetree site where because of extreme early-season N loss, 
noted with a visual N deficiency the plots that received 315 kg N ha-1 at-planting were used as 
the N-rich reference. Nitrogen recommendations were calculated using two scenarios to 
represent the target corn to be fertilized at ~V9. One was the average of all experimental units 
fertilized at planting with 45 kg N ha-1 (n=28), and the other from unfertilized experimental units 
(0 kg N ha-1; n=4). Canopy sensor reflectance data from both the target plots and N-rich 
reference plots were used to calculate the vegetative index specific to the MU algorithm.  

Soil and Weather 
Both within-field soil measurements and SSURGO data were gathered for all sites and years. 
Soil ECa surveys were performed one to four weeks prior to planting using a Veris 3100 (Veris 
Technologies, Salina, KS). Sensing was performed on 4.5 m spacing travelling 5 kph across the 
plot area. Perpendicular passes were made through the plot area to aid in the creation of an 
interpolated map. 
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Soil Characterization was done by sampling two 1.2 m soil cores with a diameter of 4.76 cm 
from each of the four replications at each site using a Giddings Model #5-UV / MGSRPSUV 
(Giddings Machine Company, Windsor, CO). The location of both soil cores in each replication 
was determined using the soil ECa survey map performed just prior to sampling, such that core 
sites represented the range of soil differences within a site as observed by soil ECa. Both drilled 
cores were laid side-by-side and characterized and separated by horizon. One core was used to 
calculate bulk density (BD) and soil moisture while the other was processed and sent to the 
University of Missouri Soil Health Assessment Center for additional soil property analyses. 
Analyses included the following properties: particle size determination through the pipette 
method, cation exchange capacity (CEC), total carbon, total organic carbon, total inorganic 
carbon, SOM, pH (salt and water), and BD. Amount of clay (i.e. %clay) was calculated by using 
the particle size determination (R. Burt and Soil Survey Staff, 2014; Nelson and Sommers, 
1996). Plant Available Water Content was determined using the Saxton and Rawls formula 
(Saxton and Rawls, 2006). This equation uses measured sand and clay textural information 
along with SOM and BD to determine soil moisture at both the permanent wilting point and field 
capacity. The difference between the soil moisture at field capacity and permanent wilting point 
results in PAWC. Following this analysis, the four cores from each site were averaged together 
to obtain site-level data.  

Soil organic matter, PAWC and clay content values collected from SSURGO and the University 
of Missouri’s Soil Health Assessment Center were depth-weighted to three intervals; 0-30cm, 0-
61cm, and 0-91cm. 

Each site’s weather data were collected using a HOBO U30 Automatic Weather Station (Onset 
Computer Corporation, Bourne, MA). Daily temperatures were used to calculate growing degree 
days (GDD) while daily precipitation (and irrigation), in conjunction with the Shannon Diversity 
Index (a measure of evenness; SDI) was used to calculate a measurement called abundant and 
well-distributed rainfall (AWDR; Tremblay et al., 2012). These variables were calculated using 
the equations below: 

𝐺𝐺𝐺 = 𝑇𝑀𝑡𝑥+𝑇𝑀𝑀𝑟
2

− 𝑇𝐵𝐵𝐵𝐵      [4] 

where 𝑇𝑀𝐵𝑀  = maximum daily temperature, 𝑇𝑀𝑀𝑀 = minimum daily temperature and 𝑇𝐵𝐵𝐵𝐵 = 100 
C. All temperature values were measured in degrees Celsius (0 C).  

𝐼𝐺𝐼 =  �−∑𝑝𝑝 ln(𝑝𝑀)
ln(𝑀)

�      [5]  

where 𝑝𝑝 = daily rainfall/total precipitation, 𝑛 = number of days in the specified time period being 
used.  

𝐴𝐴𝐺𝐼 = 𝐼𝐺𝐼 × 𝑇𝑇𝑇𝑎𝑇 𝑃𝑃𝑁𝑁𝑝𝑝𝑝𝑇𝑎𝑇𝑝𝑇𝑛     [6] 

where precipitation and AWDR are measured in cm. Weather data used in the analysis were 
collected between the date of planting to the date of canopy sensing and topdress. 

Evaluation and Statistics 
Data were analyzed by site using SAS version 9.2 (SAS Institute Inc., Cary, NC). The EONR 
was calculated using a quadratic-plateau function since it has generally been found to be the 
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best model in describing corn yield response to N (Scharf et al., 2005; Cerrato and Blackmer, 
1990). Proc NLIN in SAS 9.2 was used to fit the data to the quadratic-plateau function. The 
EONR (kg N ha-1) was calculated for all 32 site years using treatments 1, 2, and 9-14 (Table 
1.3) as shown:   

𝐸𝐸𝑁𝐼 = (−𝑏−(𝑟𝐵𝑟𝑀𝑟)
(2𝑐)

     [7] 

where b and c = linear and quadratic response coefficients from the optimized quadratic 
function, and ratio = $0.88 kg-1 N/$0.03 kg-1 grain (i.e., N price/corn price). The EONR was set to 
not exceed the maximum N rate (315 kg N ha -1).  

Differences between the MU algorithm recommendations and EONR (MUDiff) were calculated as 
follows: 

     𝑀𝑀𝐷𝑀𝐷𝐷 = 𝑁𝐼𝑁𝑁𝑀𝑀 − 𝐸𝐸𝑁𝐼    [8] 

where the 𝑀𝑀𝐷𝑀𝐷𝐷  is in kg N ha-1.  

Linear regression, was performed for all soil (at all three depth intervals) and weather variables, 
at one N rate (45 kg N ha-1), using the Proc REG function in SAS 9.2, to determine which were 
significant (p < 0.10) and related to the 𝑀𝑀𝐷𝑀𝐷𝐷 . The interactions between these variables were 
also modeled using linear regression (p < 0.10). University of Missouri Algorithm Adjustment 

A total of three adjusted MU algorithms were created. One algorithm was adjusted with 
significant weather variables, another with significant SSURGO variables combined with 
weather, and the last with significant measured soil measurements combined with weather 
variables. Adjustments were made to each algorithm based on the intercept correction and 
coefficients produced by the Proc GLMSELECT (p < 0.05). This model is a “leave one out” 
approach to minimize model bias when a site is dissimilar from the rest.  
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Results and Discussion 
Using the procedures described above the following are the determined models used to adjust 
the MU algorithm. 

𝑴𝑴𝟒𝟒𝑾𝑾𝑾𝑾𝑾𝑾𝑾 = 𝑵𝑵𝑾𝑵𝑴𝑴 − 𝟐𝟐𝟐 + 𝟒𝟒𝟒 × 𝑺𝑺𝑺       
 [9] 

𝑴𝑴𝟒𝟒𝑺𝑵𝑺𝑺 = 𝑵𝑵𝑾𝑵𝑴𝑴 − 𝟏𝟒𝟐+ 𝟒𝟒𝟐 × 𝑺𝑺𝑺 − 𝟐 × 𝟏𝟏−𝟕 × (𝑪𝑪𝑾𝑪𝟒𝟏 × 𝑷𝑷𝑷)   [10] 

𝑴𝑴𝟒𝟒𝑴𝑾𝑾𝑴 = 𝑵𝑵𝑾𝑵𝑴𝑴 − 𝟏𝟐𝟐 + 𝟒𝟐𝟑 × 𝑺𝑺𝑺 − 𝟏.𝟏𝟏𝟕 × (𝑷𝑷𝑷 × 𝑷𝑷𝑾𝑪𝟐𝟏)    [11] 

where all adjusted algorithm N recommendations are in kg N ha-1. The SDI = the evenness of 
rainfall from the time of planting to the time or sensing, and Clay30 = SSURGO surface clay (0-
30 cm) and PPT = precipitation from planting to sensing. PAWC60 = measured plant available 
water (0-60 cm). 

Impact of Soil and Weather Information on the Algorithm  
The MU algorithm was mediocre in matching N fertilizer recommendations with EONR across a 
regional landscape. However, after adjusting the MU algorithm with gathered soil and weather 
information, N fertilizer recommendations improved (Figures 1.2, 1.3, and 1.4). Algorithm N 
fertilizer rate recommendations for 32 sites are shown relative to EONR in Table 4.6 and scatter 
plots (Figure 1.2). Points on or near the 1:1 diagonal line indicate the algorithm performed well 
for making an N rate recommendation. Points below the line represent an underestimated N 
recommendation and sites above the line represent an over-estimated N recommendation.  
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Figure 1.2. The unadjusted MU algorithm compared to the MU adjusted algorithms, for all 32 site locations across the 2014 
and 2015 growing seasons. The diagonal line on each graph represents a 1:1 relationship between the economic optimum 
N rate (EONR) and the algorithms’ recommendation. Ideally all sites would be on or close to this line suggesting the 
algorithm matched EONR. Sites below the line represent an underestimated N recommendation and sites above the line 
represent an over-estimated N recommendation. Generally across growing seasons, soil or weather information used to 
modify the original MU algorithm improved performance. The 2014 sites are closer to the 1:1 line than 2015 sites which 
may be due to more variable weather experienced during the 2015 growing season.
 

 
Figure 1.3. The percentage of 2014 and 2015 sites within 30 kg N ha-1 of the economic optimum N rate (EONR), contrasting 
four algorithms. Algorithm performance is evaluated based on the height of the bar. Taller bars suggest a larger 
percentage of sites were within 30 kg N ha-1 of EONR. As soil information was used to adjust the MU algorithm, more sites 
fell within 30 kg N ha-1 of EONR. Weather information alone did not improve the MU algorithm for 2014.  
 

 
Figure 1.4. Difference between EONR and the N recommendations for 32 sites during the 2014 and 2015 growing seasons, 
contrasting four algorithms. Accuracy is represented by alignment of the box median line to a difference = 0.  Precision is 
represented by box size and whisker length. The adjusted University of Missouri (MU) algorithm performed the best when 
soil or weather information was added.  
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The distribution of rainfall (SDI) from the time of planting to the time of sensing was the only 
weather variable, which exhibited no  interaction with soil measurements, that was found to be 
significantly related to the difference between the MU algorithm recommendations and EONR. 
This is likely because precipitation and the distribution of precipitation largely influence the 
availability of N and/or N losses early in the growing season. Too much precipitation can deprive 
microbial bacteria of oxygen forcing them to respire anaerobically, using NO3

- as an oxygen 
source (denitrification). This process ultimately decreases the amount of N available for plant 
uptake, possibly leading to decreased corn yield (Blevins et al., 1996). An example of this was 
the Lonetree site. This site experienced large amounts of rainfall (33 cm) that was distributed 
evenly (SDI = 0.75). Therefore, as the MU algorithm was adjusted for the SDI, the N 
recommendation increased from 238 to 353 kg N ha-1. This modification resulted in an N 
fertilizer recommendation within 38 kg N ha-1 of EONR for target corn that received 45 kg N ha-1. 

The interaction between SSURGO surface clay (0-30 cm) and precipitation was also 
related to the differences between the algorithms recommendations and EONR. Soil texture, to 
some extent, determines the diffusivity, tortuosity, and permeability of water in the soil. Clayey 
soils have more surface area than medium or coarse textured soils, are mostly negatively 
charged, and are highly attracted to water (Schaetzl and Anderson, 2014), creating conditions 
that decrease PAWC and promote the loss of N through denitrification, which can shrink corn 
yield (Blevins et al., 1996). Also, soils with large clay percentages close to the surface of the soil 
are prone to large amounts of surface runoff due to slow infiltration rates (Schaetzl and 
Anderson, 2005). Nitrogen loss can also occur in the absence of clay through leaching, as seen 
on the Brandes and Brandes2 sites. These sites have <10% clay but received substantial 
amounts of water, likely resulting in leached NO3

-. Following the addition of SSURGO collected 
surface clay and it’s interaction with precipitation, the MU algorithm recommendations improved 
for these sites. Recommendations, for both growing seasons, increased by as much as 69 kg N 
ha-1 resulting in an N fertilizer recommendation within 11 kg N ha-1 of EONR.   

The interaction between precipitation and measured PAWC (0-60 cm) was also found significant 
in describing the difference between the MU algorithms and EONR. Explanations for this are 
numerous. Water, as mentioned above, drives both soil and plant processes that are crucial for 
plant development and yield. These processes include and are not limited to photosynthesis, 
evapotranspiration, the movement of N to plant roots, N loss through leaching and 
denitrification, bacterial N fixation, and microbial respiration, all of which contribute to the fate of 
N and corn yield. All interactions found significant had a temporal component supporting 
observations from previous research that temporal variability driven by weather may be as or 
more important than spatial soil variability (Kitchen et al., 2005). Examples of improved site N 
fertilizer recommendations after incorporating the interaction between precipitation and 
measured PAWC into the MU algorithm are seen in the Mason, Sand2, and Darling sites. The 
Mason site recommendation increased by 26 kg N ha-1 to match EONR. The Sand2 site N 
fertilizer recommendation increased by 85 kg N ha-1 to be within 7 kg N ha-1 of EONR. An 87 kg 
N ha-1 increase for the Darling site resulted in an N application recommendation within 11 kg N 
ha-1 of EONR.  

Weather versus Soil 
When comparing the weather adjusted MU algorithm with the SSURGO and measured adjusted 
MU algorithms, considering both growing seasons, the MU algorithm adjusted with measured 
soil information performed best (Figure 1.4; Table 1.4). When adjusted with measured soil 
information, the median value decreased from -41 kg N ha-1 to 0.31 kg N ha-1 (Figure 1.4). This 
produced an improvement in algorithm accuracy. The RMSE improved from 76 kg N ha-1 to 53 
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kg N ha-1 suggesting a meaningful improvement in precision. To a lesser extent, N 
recommendation accuracy and precision also improved with the weather adjusted MU algorithm 
and the SSURGO adjusted algorithm. These improvements are illustrated in Figure 1.3 showing 
that a larger percentage of the 32 sites were within 30 kg N ha-1 of EONR than the unadjusted 
MU algorithm. The percentage of sites within 30 kg N ha-1 of EONR improved from 31 to 56% 
when the algorithm was adjusted with weather and measured soil variables. However, some 
differences between EONR and the MU algorithm recommendation were simply not explained 
by the weather and soil variables used here. Both the Belmont and Troth2 sites were largely 
unaffected by the modified MU algorithm. The Troth2 site had large amounts of standing water 
on the field caused by groundwater seep partially due to its proximity to the Missouri river and 
heavy rainfall events that occurred upriver. The Belmont site is historically known for being 
unresponsive to N (personal communication) for reasons unknown. Exploring other soil or 
weather factors may, in the future, help explain these responses.    

Table 1.4. The mean and RMSE for the difference between the algorithm N recommendation and EONR are presented.  
Results are presented by growing season and combined over growing seasons. Negative and positive mean values 
indicate an under- and over-estimation, respectively, in the N rate recommendation. Lower RMSE values indicate greater 
precision. 

 

 

 

 

 

 

      

Differences between Growing Seasons   
The decline in accuracy seen in the unadjusted MU algorithm for the 2015 growing season 
(Figures 1.2 and 1.3) may be attributed to abnormal excessive precipitation, particularly for the 
southernmost sites. At several sites, precipitation before and following sensing was excessive 
and frequent. The 2015 Troth2 site received 28 cm of rain between sensing to plant maturity 
which is three times as much as the 2014 Troth site. Similarly, the 2015 Lonetree site, located 
on a claypan soil, received twice as much precipitation as the claypan soil 2014 Bay site. 
Excessive precipitation on claypan soil creates an environment for both significant surface 
runoff and denitrification (Blevins et al., 1996). Nitrogen loss prior-to-sensing may be captured 
and corrected by the canopy sensor, but post-sensing N loss cannot be corrected without 
additional late season N applications. These excessive rainfall scenarios generally resulted in 
inaccurate N fertilizer recommendations. Also, the N recommendations given by the algorithms 
were highly sensitive to the difference in reflectance readings between the target and N-
reference corn. Larger differences generally resulted in N fertilizer recommendations closer to 
EONR.  

Target N 
Treatment 

Year Algorithm Mean RMSE 

kg N ha-1   —kg N ha-1— 
45 2014 MU -45 66 
  MUweather 0 42 
  MUSSURGO 14 45 
  MUMeasured 13 45 
 2015 MU -39 84 
  MUweather 23 74 
  MUSSURGO 32 75 
  MUMeasured 9 60 
 Combined MU -42 76 
  MUweather 12 60 
  MUSSURGO 23 61 
  MUMeasured 1.2 53 
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Following the adjustments for the 2015 growing season, median values were similar to 
those from the 2014 growing season, and the percentage of sites that adjusted to within 30 kg N 
ha-1, in some instances, surpassed those from 2014 (Figures 1.3). However, while the accuracy 
may have increased, higher mean and RMSE values (Table 1.4) showed a decrease in 
precision compared to 2014. Definite improvements in both accuracy and precision were seen 
when soil and weather information was used to inform the MU algorithm for both growing 
seasons.    

Conclusion 
Singly and when combining growing seasons, all adjusted algorithms outperformed the original 
MU algorithm. Thus, even though canopy sensing uses the corn plant as a bioassay to 
generally capture the N health of the crop, health that is impacted by early-season soil and 
weather interactions, it was shown that additional direct soil and weather measurements could 
be used to improve the MU algorithm for sensor-based corn N recommendations.  

Differences in algorithm performances between growing seasons are attributed to the amount of 
precipitation from the time of sensing to the time of plant maturity. Most recommendations by 
the MU algorithm adjusted with measured soil data out performed those by the SSURGO 
adjusted algorithm; however SSURGO soil variables are easier and less expensive to collect. 
The increased performance by the measured soil variables may not be worth the added time 
and money it takes to collect samples.  

Other soil and weather variables not mentioned or explored with this research may also be 
considered for modifying the MU algorithm for improved N fertilizer recommendations. Further, 
this same approach should be tried with other corn canopy sensor algorithms. Significantly, this 
work demonstrated that using soil and weather information improved the MU algorithm 
recommendation. The application of this work ultimately could lead to increased grower profit 
and lower negative environmental impacts.  
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