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Abstract 
 
Traditional agronomic experimentation is restricted to small plots. Under appropriate 
experimental designs the effects of uncontrolled environmental variables are minimized and 
the measured responses (e.g. in yields) are compared to controllable inputs (seed, tillage, 
fertilizer, pesticides) using well-trusted design-based statistical methods. 
However, the implementation of such experiments can be complex and the application, 
management, and harvesting of treated areas might have to be done manually or with 
specialist equipment. Furthermore, these experiments only compare treatment performance 
over a relatively small area and the same relationships might not apply over larger 
management zones, or fields. In addition, the small area of the experiments might limit their 
precision. 
These problems have motivated a number of researchers and farmers to consider field-scale 
experiments which tend to be based on systematic rather than randomized designs. 
Systematic experimental designs enable different treatments to be applied relatively simply 
using farm equipment. However, design-based statistical methods are not applicable for the 
systematic designs and correlation amongst the observed responses can lead to 
exaggerated estimates of the significance of any observed treatment differences. Therefore, 
geostatistical or model-based methods must be used to quantify and account for this 
correlation. 
In this study the statistical analysis of such systematic experiments is considered with 
reference to a trial where the fertiliser nitrogen rate was varied on an arable field. The 
response variable was a vegetation index derived from an aerial photograph. The magnitude 
and significance of the average treatment effects across the experiments can be calculated if 
the data are represented by a linear mixed model which includes spatial correlation. If the 
spatial correlation is neglected then the confidence intervals for the treatment effects were 
erroneously small. Furthermore, a novel analysis method referred to as spatial discontinuity 
analysis (SDA) is proposed. SDA was used to focus on the boundaries between different 
treatments and to test whether there was a significant jump in the response variable where 
the treatment changed. In this context, the spatial correlation was advantageous since, in the 
absence of treatment effects, the expected differences between adjacent observations was 
smaller than if they had been uncorrelated. Therefore, the local treatment effects could be 
more easily distinguished from the underlying variation of the response variable.  
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Introduction 
Agricultural experimentation regarding the response of crops to a variety of management 
interventions is crucial to the improvement of farm management decisions and to progress in 
crop science. Traditionally, agricultural experiments have been carried out in small-scale and 
controlled plots. Trusted experimental designs have been employed. These designs ensure 
that the precision of the experimental results are maximized and the variation due to 
environmental factors is minimized through choice and management of the site, 
randomization, blocking and replication (Little and Hills, 1978). The experiments are 
analyzed using design-based statistical techniques such as the analysis of variance 
(ANOVA) that utilize the randomization to ensure that the estimates of the effects of different 
treatments are unbiased and largely free from assumptions. The ANOVA can be used to test 
the statistical significance or the probability that any observed differences in the response 
variable (e.g. the crop yield) could have occurred by chance rather than as a result of the 
treatment difference. 

However, farmers sometimes question whether management recommendations inferred 
from plot-based experimentation are necessarily applicable to their own farms. The plot-
based experiments might have been conducted in a different region, on different soil types, 
in different environmental conditions or using different varieties. Therefore farmers conduct 
on-farm experiments to verify industry claims and recommendations and to test and fine-
tune new concepts, products, and systems under local environmental and management 
conditions. Such farmers are assisted by the increasingly availability of precision agriculture 
technology and the associated ease with which inputs can be varied and site-specific data 
can be gathered.  

A wide variety of on-farm experimental designs have been implemented. These range from 
simple split-field designs, in which a field is divided into two halves, to complex embedded 
designs such as the checkerboard (Kindred et al., 2015) or sine-wave design (Bramley et al., 
1999). Split-trials are relatively easy to establish and do not require high resolution electronic 
data recording. However, the absence of replication means that it is not possible to test 
formally whether the observed differences in responses are wholly the result of the different 
treatments or whether they are influenced by other factors (e.g. fertility, soil type, drainage or 
slope) that vary between two plots. In contrast, the embedded designs are highly replicated 
and therefore the treatment effects can be disentangled from the other sources of variation 
but the implementation and analysis of these experiments is time consuming and requires 
technical expertise, commonly more than is available on farms.  

Farmers often adopt a compromise approach such as strip-trial designs where the 
treatments are applied in parallel strips of two or three harvester widths over the entire 
length of the field. The strips can be orientated perpendicular to major sources of variation 
(e.g. different management classes or soil zones) to explore the interaction between these 
factors and the treatment effects. In common with traditional plot trials the experimentalist 
will generally attempt to determine whether the mean yields or responses in strips under one 
treatment differ significantly from the mean yields in strips under a different treatment. 
Alternatively, Lawes and Bramley (2012) specifically focused on the difference in the 
response variable in adjacent strips under different treatments. Such comparisons were 
motivated by the ideas that sharp changes to responses (e.g. crop colour) are often 
observed at the boundary between treatments and that by focusing on these differences 
within a small area one might expect that the environmental factors which limit yield are 
relatively uniform and their influence relatively small.  

Standard ANOVA methods require the assumption that the observations of the response 
variable are uncorrelated or independent. However, one would expect that the observations 
of the response variable across a field are likely to be spatially correlated. For example, 
yields recorded within a small sub-region of the field are more likely to be similar than those 
recorded a long distance apart because the environmental factors limiting the yield are likely 
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to be relatively uniform within the sub-region. In traditional plot trials, the independence 
assumption is appropriate because the different treatments are allocated at random. On-
farm experiments are more likely to follow a systematic design where particular treatments 
are constrained to be situated a set distance from each other. In these trials, the 
independence assumption is inappropriate and the spatial autocorrelation amongst the 
observations must be accounted for.  

Geostatistical models can be used to account for autocorrelation. The autocorrelation 
between observations is commonly expressed in the form of a variogram. The variogram 
describes how the expected squared difference between a pair of observations varies 
according to the lag distance separating them. The variogram for a particular set of 
observations can be estimated by the method of moments. First a series of point estimates 
of the variogram is calculated for different lag distances. Then an authorized mathematical 
function (Webster and Oliver, 2007) is fitted to these point estimates. Once the variogram 
can be expressed as a mathematical function it can be used within the kriging predictor to 
simulate or predict the variable at sites where it has not been observed and to calculate the 
uncertainty of these predictions. However, these predictions and uncertainties are only 
accurate if the assumptions of the geostatistical model are appropriate. 

The application of geostatistical techniques to agricultural trials is far from new.  
McBratney (1984) was the first to map experimental treatment responses across a field by 
kriging and Blackmer and White (1996), Bruulsema et al. (1996), Cathcart et al. (1999), and  
Sadler et al. (2002) have followed suit. However, these authors did not assess whether the 
treatment effects were statistically significant. This shortcoming was addressed by  
Bishop and Lark (2006, 2007) who proposed that the yields under different treatments could 
be considered as coregionalized variables. Such variables might be autocorrelated and 
correlated to each other in a manner that varies according to the lag distance separating 
observations. This multivariate variation can be represented by a linear model of 
coregionalization (LMCR) which consists of a variogram for each variable and a cross-
variogram for each pair of variables. The parameters of these variograms and cross-
variograms must be constrained to ensure that negative prediction variances cannot arise. 
Having estimated their LMCR, Bishop and Lark (2006) used the z-statistic to test whether 
the yield difference was significant. 

In the majority of on-farm trials, the response variable is the crop yield as measured by a 
yield monitor within the harvester. Lark et al. (1997) noted that the spatial resolution of such 
data can be limited by the mixing of grain as it travels from the header to the yield monitor 
and that artefacts can arise because of this grain flow delay. Additionally each observation 
covers an area as wide as the harvester and misleading measurements can occur if the 
cutter-bar is not ‘full’, the harvested rows are not parallel or if the row contains wheel tracks. 
These problems can be avoided if the crop response to different treatments is assessed 
using airborne or satellite sensors which can provide geo-referenced representation of the 
crop canopy. Vegetation indices have been derived from multi- and hyper-spectral images of 
the reflectance of the crop canopy taken from satellites or planes but the value of these 
images can be limited by poor resolution, insufficient availability of images and high 
acquisition costs. In recent years unmanned aerial vehicles (UAV) equipped with compact 
RGB (red, green, blue) digital cameras have become widely available and they have been 
suggested as a convenient and cost-effective alternative for crop monitoring. For example, 
the green-red vegetation index (RGVI) derived from the red and green spectral band of a 
standard RGB image has been used by Motohka et al. (2010) as a phenological indicator. 
Also, Hunt et al. (2005), Geipel et al. (2014) and Bendig et al. (2015) have demonstrated that 
the RGVI can be used to determine and predict biomass, nutrient status, and yield. 

In this paper the geostatistical analysis of strip trials is considered with reference to a 
nitrogen response trial on an arable crop in southern England. The response variable is the 
RGVI derived from a RGB image taken from an UAV. The variation of the RGVI is 
represented by a linear mixed model (LMM) which separates the component of variation that 
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can be explained by the treatments or environmental factors from the spatially correlated 
residual variation. This model is used to test for significant differences in the average RGVI 
under each nitrogen treatment across the trial. Furthermore, a novel form of analysis is 
introduced which is akin to the comparisons on either side of the treatment employed by 
Lawes and Bramley (2012). This analysis method is referred to as Spatial Discontinuity 
Analysis (SDA). Whereas Lawes and Bramley (2012) used design-based t-tests to explore 
the significance of the observed yield differences across the line, SDA accounts for the 
autocorrelation amongst the data via the LMM. The effect of the autocorrelation on the 
precision of SDA is rather complex. If one considers a single comparison between a pair of 
observations situated each side of the treatment line then the autocorrelation amongst the 
RGVI measurements should imply that the treatment effects can be more easily 
distinguished from the underlying variation in RGVI. However, when the comparisons 
between multiple pairs of measurements are combined then the observed differences are 
themselves correlated and therefore the precision of the combined comparisons does not 
improve with the number of pairs as quickly as it would for independent observations.  

Theory 
Linear mixed models and hypothesis testing 

 

The LMM divides the variation of the response variable into fixed effects and random effects. 
It is written: 

𝐲 = 𝐌𝐌 + 𝛜 (1) 

were 𝐲 is a vector containing 𝑛 observations of the response variable, 𝐌 is a design matrix of 
size 𝑛 × 𝑞 and the vector 𝛃, which is of length 𝑞, contains the coefficients of the fixed effects. 
The residual term 𝛜 is a length 𝑛 vector containing random effects, which are often assumed 
to be a realization of a Gaussian random function with zero mean and covariance matrix 𝐂. If 
the observed residuals are inconsistent with the Gaussian assumption then a transformation 
might be applied to the data. If the random effects are independent then 𝐂 will be a diagonal 
matrix with the variance of each random effect on the main diagonal and zeros elsewhere. If 
the random effects are auto-correlated then 𝐂 will include non-zero elements away from the 
main diagonal.  

The fixed effects are the product 𝐌𝐌. In its simplest case, when the mean of the response 
variable is expected to be constant across the field, 𝐌 is a 𝑛 × 1 matrix and all elements of 
𝐌 are equal to one. One might hypothesise that the mean of the response will be different in 
a portion of the field which undergoes an experimental treatment. This assumption can be 
tested by adding a second column to 𝐌 which contains one when the corresponding 
observation is made in the treated area and zero if it is made in the control region. Further 
indicator variables can be added to 𝐌 to correspond to other treatments. 

The response variable might also vary according to other environmental covariates such as 
soil type or elevation. It can be beneficial to include such covariates in the model to reduce 
the variability of the random effects and lead to more precise estimates of the treatment 
effects (Rudolph et al., 2016). Further columns of binary indicator covariates can be added 
to 𝐌 to represent categorical covariates such as the soil type or management zone and 
cross terms between these factors or between these factors and the treatment effects. 
Linear trends in continuous covariates such as the spatial coordinates, an environmental 
variable such as slope or a variable derived from a proximal or remote sensor can be 
accommodated by adding them as additional columns to the 𝐌 matrix. Polynomial trends 
can also be considered by including the square, cube and higher order products of these 
covariates.  

As more columns are added to the 𝐌 matrix, there is a danger that the LMM becomes 
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overfitted. This means that the model becomes too intricately fitted to the observed dataset 
but does not produce similarly reliable predictions at sites which were not used to calibrate 
the model. This problem can be avoided if one ensures that each additional column of 𝐌 
leads to a significant improvement to the fit of the model. Different criteria can be used to 
assess the improvement in fit and the Akaike Information Criterion (McBratney and Webster, 
1986) is commonly used in the spatial analyses of soil properties. The LMM with the lowest 
AIC best manages the tradeoff between model complexity (number of parameters) and the 
quality of the model fit.  

 

The entries of the random effects covariance matrix 𝐂 can be calculated from the variogram 
of the residuals of the fixed effects model (i.e. 𝐫 = 𝐲 −𝐌𝐌). Webster and Oliver (2007) fully 
describe the method of moments which in this study is used to estimate the variogram from 
the available observations. There are a number of different authorized variogram models 
that can be fitted. Because of a high flexibility at small lag distances the Matérn model 
(Marchant and Lark, 2007) is preferred: 

𝛾(ℎ) = 𝑐0 + 𝑐1 �1 −
1

2ν−1Γ(ν)
�
ℎ
𝑎
�
ν
𝐾ν �

ℎ
𝑎
��  for ℎ > 0 and 𝛾(0) = 0 (2) 

where ℎ is the lag distance separating two observations, 𝑐0 is the nugget variance and 
𝑐0 + 𝑐1 the sill variance, Γ is the gamma function, 𝐾ν denotes the modified Bessel function of 
the second kind while ν >  0 and a >  0 are smoothness and scale parameters, 
respectively. Thus the variogram has four parameters 𝑐0, 𝑐1, a and ν which must be 
estimated.  

Once the variogram parameters have been estimated, element 𝑖, 𝑗 of the covariance matrix 
can be calculated using: 

𝐶𝑖𝑖 = 𝑐0 + 𝑐1 − 𝛾�ℎ𝑖𝑖� (3) 

where ℎ𝑖𝑖 is the lag distance and 𝐶𝑖𝑖 the covariance between points 𝑖 and 𝑗. Note that, if 
there is no spatial correlation present in the random effects then 𝑐1 = 0 and 𝐶𝑖𝑖 = 0 if 𝑖 ≠ 𝑗 
and 𝐶𝑖𝑖 = 𝑐0 if 𝑖 = 𝑗. Thus 𝐂 = 𝑐0𝐈 where 𝐈 is the 𝑛 × 𝑛 identity matrix. 

The unknown coefficients of the fixed effects 𝛃 can be estimated by maximum likelihood: 
𝛃 = (𝐌T𝐂−1𝐌)−1𝐌T𝐂−1𝐲, (4) 

and the covariance matrix of these estimated coefficients is equal to: 
𝐖 = (𝐌T𝐂−1𝐌)−1. (5) 

It was previously suggested that one might want to test whether the mean effect of a 
particular treatment is significant. This can be achieved by a z-test. If the 𝑖th column of 𝐌 
indicates the presence or absence of the treatment at each site, then the z statistic is equal 
to: 

𝑧𝑖 =
𝛽𝑖

�𝑊𝑖𝑖
, (6) 

where 𝛽𝑖 is the 𝑖th element of 𝛃 and 𝑊𝑖𝑖 is the 𝑖, 𝑖th element of 𝐖. The null hypothesis that the 
treatment has no effect on the response variable (i.e. that 𝛽𝑖 = 0) can be rejected at the 
𝑝 = 0.05 level if |𝑧𝑖| > 1.96. This test accounts for the spatial autocorrelation amongst the 
data through the covariance matrix 𝐂. When there is no spatial correlation and 𝐂 = 𝑐0𝐈 it 
reduces to a standard design-based test. 

Spatial discontinuity analysis 

The above test considers the average effect of the treatment on the response variable 
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across the experiment. This might be sufficient information for a farmer to decide whether or 
not to employ the treatment uniformly across the field. However, the farmer might wish to 
consider whether it is beneficial to vary the treatment within the field and therefore a test that 
can assess more localized responses is required. This idea motivated Lawes and Bramley 
(2012) to explore the treatment differences almost continuously along a line which divided 
two areas under different treatments. Their design-based test of such differences can be 
extended to a model-based analysis that accounts for spatial correlation and is referred to 
here as spatial discontinuity analysis or SDA.  

SDA is based on a LMM of the response variable under the control treatment. First, a line in 
the field is identified where the control treatment (𝑇0) is applied on one side and the 
treatment of interest (𝑇1) is applied on the other side. The locations of the observations 
adjacent to this line where 𝑇𝑖 is applied are referred as 𝐱𝑖 and the corresponding 
observations of the response variable are 𝐲𝑖. Then, a LMM of 𝐲0, the response variable 
under the control treatment, is estimated. This LMM and the observations of 𝐲0 are used to 
simulate 1000 realizations of 𝐲0 at the locations 𝐱1 by the LU method  
(Webster and Oliver, 2007). These simulations are referred as 𝐲0�. Then the difference 
between these simulations and the observed values of 𝐲1 at these sites are calculated: 

𝐝(𝐱1) = 𝐲0�(𝐱1) − 𝐲1(𝐱1). (7) 

Thus 𝐝(𝐱1) consists of 1000 simulations of the treatment effect at each of the locations in 𝐱1. 
Histograms of these differences can be used to assess the significance of the treatment 
effect. For example, if at a single site more than 950 of the values of 𝐝 are positive this 
indicates that a treatment has a positive effect on the response variable and the null 
hypothesis of no effect can be rejected at the p=0.05 level. 

A single observation location might not be sufficiently large for a significant treatment effect 
to be observed. Therefore one might want to average the simulated values of 𝐝 at multiple 
locations and see if these average values are significantly different to zero. By averaging 
across multiple locations one might expect that smaller differences in the response variable 
can be detected but the spatial resolution of the comparison decreases. The detectable 
difference at a single site and the rate of decrease of this detectable difference as it is 
averaged across multiple sites will depend on the amount of spatial correlation identified in 
the LMM. 

Materials and methods 

Case study 
In this study a strip trial of the response of an arable crop to different nitrogen inputs is 
considered. The trial was located at the Geldings Ley farm (51°58'27"N 0°8'25"E), 25 km 
south of Cambridge, England. The field was cropped with wheat of the variety JB Diego. 
Nitrogen was applied at a standard rate across the field except for one 25 m wide tramline 
where 60 kg N ha-1 less was applied and one tramline where 60 kg N ha-1 more was applied. 
These ‘low’ and ‘high’ treatments were situated next to each other (see Figure 1). The 
tramlines were 60 m long and orientated along a gentle north-east slope.  

The response variable is derived from an RGB aerial image of canopy reflectance taken 
from a UAV above the trial on 7th July 2015 (during grain-filling) with a Panasonic Lumix GH4 
camera mounted on a DJI S900 Drone which was operating 100 m above the surface. The 
image covered the entirety of the two treated tramlines and one and a half tramlines of the 
standard or control treatment. Ground resolution of the image was 0.03 m which was geo-
referenced on DGPS located wheel-ways in ArcGIS. Treatments were assigned to the image 
using a buffer around the center of the treatment bout of half the sprayer width.  
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Pre-processing 
To quantify the treatment response the green-red vegetation index was calculated as: 

RGVI =
DNgreen − DNred

DNgreen + DNred
 (8) 

where DNgreen and DNred are the digital numbers (0-255) of the green and red band of the 
image. The RGVI varies between -1 for green and +1 for red image pixels. High frequency 
noise was removed from the image by applying a Daubechies Type I two-dimensional 
wavelet decomposition filter which resulted in a reduction of the image resolution to 1 m. A 
0.5 m wide buffer was applied along each wheel-mark and information within these areas 
was excluded from the statistical analyses. To simplify the analysis, the image was rotated 
so that the treatment-bouts ran vertically. A spatial trend in the RGVI values is apparent in 
the images. This trend appears to be an effect of cloud shading on the image rather than a 
property of the canopy. 

Geostatistical analyses 
A LMM was fitted to the preprocessed RGVI values. In an initial model, the standard N rate 
was treated as the control treatment and the ‘high’ and ‘low’ treatments were included as 
additional rows in the fixed effects matrix. A Matérn variogram model was used for the 
random effects. Then, additional spatial trend terms were added to the fixed effects matrix to 
explore whether they led to a reduction in the AIC. These terms were included to represent 
the cloud shading effect which was observed in the image. The LMM with the lowest AIC 
was used for the subsequent analyses. 

The magnitude of the treatment effects were extracted from the estimated LMM and the 
significances of these effects at the field-scale were explored using the z-statistic  
(Equation 6). Then SDA was conducted along the lines separating the control from each of 
the non-standard treatments and the line separating the two non-standard treatments. Next, 
SDA was used to make comparisons at the scale of a single pixel and then for combined 
pixels to explore the rate at which the precision of the comparisons improved. 

To explore the importance of the autocorrelation in the LMM, the above analyses were 
repeated but the parameters of the LMM were constrained such that 𝑐1 = 0. Thus the RGVI 
values were assumed to be independent and the analyses became equivalent to a design-
based approach. 

Results 
The high resolution RGB canopy reflectance measurements of the nitrogen fertilizer 
experiment are depicted in Figure 1a. An underlying trend is evident in the image that is not 
related to the different N treatments. The image appears to become brighter and more 
blurred towards the top left hand corner of the image. It is assumed that this trend is either 
caused by optical effects or the reflection of wind-induced motion of the crop canopy. 
Chlorophyll deficiency expressed as leaf yellowing is evident throughout the low level 
nitrogen treatment. Small and irregular symptoms of nitrogen deficiency are also evident 
within the control treatment. In contrast, the dark green canopy of the N-rich treatment 
indicates good crop performance. A sharp contrast in green intensity can be observed along 
the interface between the low N level and standard treatment. The clear distinction between 
low and high N treatment diminishes towards the northern end of the line where the image 
becomes brighter and more blurred. 

The filtered and down-sampled RGVI image is shown in Figure 1b. The pattern of variation is 
similar to that described for the RGB image. The standard deviations of the high resolution 
RGVI image under the low, standard and high treatments were 0.035, 0.038 and 0.031 
respectively (Table 1). Filtering reduced these standard deviations to 0.016, 0.024 and 
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0.015. The raw RGVI also had a strong negative skew which suggests that values might not 
be consistent with a Gaussian random effects model. However, the magnitude of this skew 
reduced with filtering. The LMMs described below were re-fitted after various transformations 
of the data but these did not lead to an improvement in the AIC. 

Linear mixed models with constant, linear and quadratic spatial trends were estimated for 
the filtered RGVI image. The quadratic trend model had the lowest AIC and was used for 
subsequent analyses. The variogram of this LMM (Figure 2) possessed pronounced short 
scale variability and autocorrelation for distances greater than 10 m. The estimated trend 
surface and the residuals from this trend surface are shown in Figure 1c-d. Note that these 
residuals are not the same as the LMM random effects since the treatment effects have not 
been removed. The removal of the quadratic trend from the image further reduced the 
standard deviations for each treatment to 0.014, 0.011 and 0.010. Prior to the removal of the 
quadratic trend, the standard treatment unexpectedly had the largest average RGVI values. 
However when the quadratic trend was removed the RGVI increased upon moving from low 
to standard to high treatments.  

 

 
Table 1: Descriptive statistics if the RGVI estimation derived from a) the high resolution, b) the downscaled,  

and c) the downscaled RGB image after removing of quadratic trend components. 
 

a) Treatment Descriptive of the RGVI estimation (high resolution) 

  Mean Median Sd Min Max Range Skew CV 

  Low -0.048 -0.047 0.035 -1.000 0.586 1.586 -0.104 0.727 

  Standard -0.084 -0.079 0.038 -1.000 0.269 1.269 -0.961 0.450 

  High -0.070 -0.065 0.031 -1.000 0.256 1.256 -1.419 0.434 

                    

b) Treatment Descriptive of the RGVI estimation (downscaled) 

  Mean Median Sd Min Max Range Skew CV 

  Low 0.049 0.049 0.016 0.005 0.105 0.099 0.304 0.319 

  Standard 0.083 0.089 0.024 0.027 0.130 0.103 -0.252 0.283 

  High 0.071 0.073 0.015 0.036 0.108 0.073 -0.112 0.217 

                    

c) Treatment Descriptive of the RGVI estimation (downscaled + trend removed) 

  Mean Median Sd Min Max Range Skew CV 

  Low 0.048 0.048 0.014 0.003 0.093 0.091 0.084 0.286 

  Standard 0.074 0.075 0.011 0.009 0.106 0.096 -0.608 0.152 

  High 0.082 0.082 0.010 0.050 0.111 0.061 0.007 0.124 

 
Table 2: Comparison of treatment effects at the field scale using the classical and model based approach. β is the 

difference between the mean response and two tested treatments. SE is the standard error of the estimated β. 

 
Treatment 

comparison 
Design-based   Model-based 

β SE   β SE 

Standard vs Low -0.0307 0.0007   -0.0142 0.0013 

Standard vs High 0.0060 0.0007   0.0052 0.0013 
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According to the z-tests (Equation 6) at the field-scale the low N treatment had a significant 
negative effect on RGVI and the high N treatment had a significant positive effect on RGVI. 
These results are summarized in Table 2. Note that when a design-based analysis is applied 
(i.e. when the random effects are assumed to be independent) that the standard errors on 
the treatment effects are underestimated. This illustrates how inappropriate statistical tests 
could potentially lead to statistical significance treatment differences being erroneously 
assigned to small treatment differences. 

The results of the localized SDA are shown in Figure 3. When comparisons across the line 
are made for 1-m pixels then no significant differences are observed. However, when the 
pixels are merged into 10 m long blocks, significant treatment effects are evident. These 
results illustrate the trade-off between spatial resolution and precision for SDA comparisons. 
When a single pair of pixels is considered, a reasonably large difference between them 
might occur by chance. However, it is less unlikely that multiple pairs of pixels spanning a 
larger block would all have similar differences unless there was a treatment effect. In Figure 
4 the improvements in precision that occur with increasing block size are illustrated. Note 
that if the random effects had been assumed to be independent that erroneous standard 
errors would have been estimated. For comparisons between a single pair of pixels the 
estimated standard errors would have been too large because the correlation between the 
adjacent RGVI values would have been ignored. However, as the block size is increased the 
standard errors based on the independent random effects model become too small. This 
reflects that the different comparisons are themselves correlated and therefore the 
improvement in precision from averaging over larger blocks is not as large as would be 
expected for randomly positioned comparisons.  

Discussion 
Farmers require on-farm experiments to confirm that management recommendations are 
suited to the local conditions found in their fields. However, it is impractical, expensive and 
time-consuming for farmers to establish the randomized plot experiments favored by 
agricultural researchers. Farmers are more likely to implement simpler experiments such as 
split-field comparisons or strip-trials. It is important to formally analyze the results of such 
trials to assess whether any potential treatment effects are statistically significant. Statistical 
tests are required to determine the probability that the observed results might have occurred 
by chance rather than because of a real effect of the treatment. Since the simple trials 
employed by farmers tend to be systematic rather than randomized, standard design-based 
tests such as ANOVA cannot be applied. Instead it is necessary to estimate a model of the 
underlying variation of the response variable and to explore whether the responses recorded 
in treated areas are significantly different. The inferences drawn from such model-based or 
geostatistical analyses are only valid to the extent that the model is a valid representation of 
the underlying variation.   

In this paper two approaches for testing the significance of treatment effects in non-
randomized agricultural experiments have been demonstrated. The first approach is 
analogous to the ANOVA in that it tests whether the mean values of the response variable 
are different in areas that have undergone different experimental treatments. A statistical 
model is used to account for the spatial correlation amongst the observations of the 
response variable. A farmer might use the results of such a test to decide on the optimal 
uniform treatment for the field. The second test which is referred as Spatial Discontinuity 
Analysis (SDA) looks specifically at the response variable on either side of the boundary 
separating different treatments. Sharp changes in the color, height or density of a crop are 
often evident where a management change occurs. SDA can be applied to small blocks 
along the boundary line to formally test whether any measured jump in the response variable 
is statistically significant. It is possible to use SDA to consider whether the effectiveness of 
the treatment varies according to the soil zone or management zone and therefore a farmer 
might use the results to decide upon variable treatments within the field.  
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The two analysis methods were applied to a nitrogen strip-trial. Fertilizer nitrogen was 
applied at the recommended rate in the majority of the field. The application rate of nitrogen 
was increased by 60 kg/ha in one strip and reduced by 60 kg/ha in another. The response 
variable was the RGVI derived from a RGB photograph taken from a UAV. At the field-scale 
both of the treatments had a significant effect on the RGVI. Also, the SDA identifies blocks of 
significant treatment effects along the boundaries separating the different treatments. There 
is a trade-off between the precision of the SDA and the spatial resolution of the comparison 
(i.e. the length of the block). 

For both of the analyses it could be confirmed that if the data were erroneously assumed to 
be independent then the estimated standard errors of the treatment effects were poorly 
estimated. Thus, if the underlying variation is improperly modelled then false inferences 
about the treatment effects might be drawn. In the field-scale test the standard errors 
estimated from the independent model are erroneously small because the model has failed 
to acknowledge that the observations are correlated and therefore to some extent they 
replicate the same information. For the SDA on a small block the independent model over-
estimates the standard errors of the treatment effects. In this circumstance the spatial 
correlation amongst the response variable is a benefit that means a treatment effect can be 
more easily identified. However, as the length of the block increases the true standard errors 
do not decrease at the rate that would be expected according to the independent model. 
This is because the series of comparisons between points on either side of the boundary are 
themselves correlated. 

The same analysis methods can be applied to other response variables such as spectral 
indices derived from proximal or remote sensors or yield measurements derived from a 
harvester with yield monitor. The use of yield monitors leads to further challenges because 
factors such as the delay between the grain being cut and recorded by the sensor can lead 
to artefacts in the data. Such artefacts must be removed prior to statistical analyses.  

The precision of these systematic experiments is largely controlled by the design of the 
experiment, the magnitude of the underlying variation in the field and the precision of the 
measurement device. The precision of the nitrogen response experiment described here 
might be improved by adding further strips of each non-standard treatment. It is plausible 
that a single strip might, by chance, coincide with a particularly fertile region of the field. In 
such a case a perceived treatment effect could actually arise as a result of the underlying 
fertility. It is less likely that multiple treated strips would all coincide with fertile regions and 
therefore additional strips improve the precision. The precision would improve if the length of 
a single strip was increased but the benefit would be limited because of the autocorrelation 
within the strip. The precision could also be improved by varying the treatment within the 
strip. These potential improvements to the precision of the experiment all increase the costs, 
effort and skill required to establish the experiment.  

If the causes of underlying variation in the response variable are known (and if these factors 
are not of concern) one might use a model to explain some of the variation. For example, a 
smooth trend was evident in the RGVI image. The authors of this study were confident that 
this trend did not reflect a property of the canopy but was instead caused by blurring due to 
crop movement or shading by clouds. It was found that the trend could be represented by a 
quadratic surface and the precision of the results improved after its removal.  

If a measurement device is prone to adding erroneous artefacts to the response then these 
might be removed by some form of pre-processing of the data. However, to a large extent an 
imprecise measurement device will always lessen the precision of an experiment. The 
spatial resolution of the experiment is also limited by the precision with which the different 
treatments can be applied. For instance, with sprayed applications there might be some 
overlap between treatments. In these circumstances it might be necessary to remove the 
data where the treatments overlap and therefore the precision of the experiment 
deteriorates. 
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The focus of this study has been on the use of on-farm experiments to determine the best 
management practices on a particular farm. However, if the results of many such 
experiments were combined then they could inform about the effectiveness of management 
practices at a much larger scale and the factors that inhibit them. The pooling and effective 
analysis of such results requires knowledge exchange between farmers and agricultural 
researchers. In the UK, the Agronōmics initiative (Kindred et al. (2016) is seeking to facilitate 
this knowledge exchange through the development of efficient designs for on-farm 
experiments, appropriate analysis methods such as those described here and the formation 
of knowledge exchange networks.  

 

Figures 
 

 
Figure 1: Strip trial design of the nitrogen response trial. a) RGB image taken by a drone at high resolution, b) the 

RGVI following smoothing and downsampling to 1 m resolution, c) the estimated underlying quadratic trend surface 
for the RGVI and d) the residuals upon subtraction of the quadratic trend surface from the RGVI image. 
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Figure 2: The estimated variogram of the LMM residuals.  

 

 
Figure 3: Results of the SDA comparing the residual RGVI on either side of the boundary between the stated 

treatments and for the stated block lengths. The red lines are the predicted difference in RGVI and the grey area the 
95% prediction interval for this difference.  
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Figure 4: Illustration of the trade-off between the precision of the comparisons across the line (expressed as two times 

the standard error when estimating the treatment effect) for the stated treatment comparisons and the length of the 
block over which the comparison is made. The black lines show the estimated precision when spatial correlation is 

accounted for whereas the red lines show the estimated precision when it is ignored.  
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