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Abstract. Precision farming (PF) will contribute to more sustainable agriculture and the global 
challenge of producing ‘More with less’. It is based on the farm management concept of observing, 
measuring and responding to inter- and intra-field variability in crops. Computers enabled the use of 
Farm Management Information Systems (FMIS) and farm and field specific Decision Support 
Systems (DSS) since mid-1980s. GIS and GNSS allowed since ca. 2000 geo-referencing of data and 
controlled traffic farming. Several types of soil and plant sensors provided site specific data on spatial 
variation in crops. Today we see the development of several cloud based data platforms, and apps 
for soil and crop monitoring and site-specific crop care. This R&D is likely to continue in the coming 
years, yielding more apps for tactical decisions and operational interventions in crops, and strategic 
decisions on more-complex crop rotation issues. PF requires these developments, needing ‘big-data’ 
to produce more with less. 
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In this paper, we show results of three research topics in which we evaluate 1) correlations between 
remote and near biomass sensing data, 2) correlations between biomass and yield sensing data and 
3) the use of task maps based on biomass sensing. The studied crops are common in The 
Netherlands: winter wheat, potato and onion. 

The studies showed acceptable correlation between remote and nearby measured biomass data. It is 
essential to remove irrelevant variation in order to get better biomass maps that can be used for yield 
prediction and task maps. In general we showed poor correlations and irregular trends in the 
correlation between biomass indices and final yield (winter wheat and onion). The correlation 
improved when seasonal mean biomass index was used. 

Finally, we showed two examples in which biomass maps were successfully used in task maps for 
chemical haulm killing and N topdress fertilizer use. The task maps were made within the web-based 
Akkerweb GIS-platform (http://www.akkerweb.nl/). Inputs were reduced by 15 – 30 % when the task 
maps were applied.  
Keywords. Advisory system, smart farming, fertilizer use, crop protection 
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Introduction 
[Click here to enter main body text] (Main body text uses Normal style) 

 

Precision farming (PF) (Skotnikov & Robert, 1996; Kempenaar & Kocks, 2013) is an 
innovation in agriculture allowing the best treatment of crops and livestock at the right 
time and smallest scale possible (up to treatment of individual plants or animals). Other 
terms used to refer to this farm management concept, are data-intensive farming or smart 
farming. Notwithstanding the term, it requires a seamless integration of different 
technologies (sensors, Global Navigation Satellite Systems (GNSS), data-infrastructures 
(ICT), Farm Management Systems (FMS), implements) and intelligence (data, DSS, 
implement control software, auto-guidance systems). Optimisation of treatments at the 
lowest scale possible will improve yields and resource efficiency in agri-food chains, so 
reducing the agricultural footprint. More and more, PF will become the ‘licence to 
produce’ for modern farmers. Key technologies required for PF have become available for 
farmers, e.g. Farm Management Information Systems (FMIS) and GNSS, providing a 
basis for implementation of PF.  

With the aim to further develop PF, we studied 1) correlations between remote and near 
biomass sensing data, 2) correlations between biomass and yield sensing data and 3) the 
use of task maps based on biomass sensing. The focus was on biomass sensor data and 
crop yield. We analysed data sets in which we had access to data from sensors that are 
used in practice. These sensors express the presence of green vegetation in NDVI 
(Normalize Difference Vegetation Index) and WDVI (Weighted Difference Vegetation 
Index). We analysed correlations between different biomass sensors and between biomass 
sensors and yield sensors. We give an outlook on how the biomass data can be used in 
variable rate task maps. These task maps are made in Akkerweb1, a GIS-platform for 
farmers that supports the safe and easy use of spatial and temporal soil, crop, climate and 
management data for precision agricultural applications, and provides apps for variable 
rate application (VRA) of seeds, fertilizers and crop protection.  

 

Materials & Methods 
 
We collected and analysed data from several agricultural fields in The Netherlands in the 
period 2012 to 2016. We studied different crops for the goals of our research.  

In topic 1 data, from seven potato crops in 2015, one onion crop and four potato crops in 
2014, were analysed on the correlation between remote and near sensing of biomass. Out 
of these seven potato crops, 70 data pairs of remote and near sensing were analysed (Van 
Wee et al., 2016). In 2014, onion data by Spot 6/7 satellite and GreenSeeker RT100 sensor 
were selected (Lageweg et al., 2016) and nine observation dates with DMC satellite and 
N-sensor data on four potato fields were available (Holleman, 2015). 

                                                

 
1 www.akkerweb.nl, Geographic Information System for farmers 
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We studied a winter wheat (Feher, 2014) and an onion crop (Lageweg et al., 2016) to test 
the correlation between biomass data and yield in topic 2.  

In topic 3 we studied two different potato crops to analyse the practical use of biomass 
data and task maps.  

Field boundaries were available from the national governmental RVO-database which is 
connected with Akkerweb. Agronomic data on crops and crop management were provided 
by the farmers. Access to satellite, soil and weather data were obtained via Akkerweb. 
Intermediate service providers (Netherlands Geomatics & Earth Observation B.V.[NEO], 
WUR-Alterra) used reflection data from the public national satellite data portal2 and 
provided NDVI and WDVI maps of the fields on the dates that satellite data were 
available in the database. The database contains images of three satellites: Formosat-2 and 
Spot 6/7 (resolutions < 10 m) and DMC (resolution > 20 m). Near sensing of crop 
reflection were measured with Yara N-sensor and Trimble Greenseeker RT100 sensors. 
The biomass indices provided by these sensors were analysed. Details on the sensors and 
indices are given in an earlier ICPA paper (Kempenaar et al., 2014). The annex also 
contains an overview of biomass indices. Crop yield data were collected with use of 
commercial systems on harvesting machines. The winter wheat was harvested with an 8-m 
wide Claas Lexion 600 series combine harvester with yield mapping unit (Feher, 2014). 
The gross yield of the onion field was measured on a 1.5 m wide onion swath lifter 
(Lageweg et al., 2016).  

 

The data (both parameter values and coordinates) were analysed in their original form. 
This means that the data were analysed as provided by the sensor systems. We had point 
data and grid data. Pairs of data were made by a nearest neighbour approach. Regression 
analysis was applied to the data pairs to study correlations. We applied linear regression of 
the Microsoft Excel 2010 software program. Q-gis and Akkerweb were used to visualize 
data and to interpret crop growth conditions and farmer information in previous crops. 

 

Results & Discussion 
 

Topic 1: Correlation between remote and nearby biomass data 
 

Analysis of data from seven potato crops in The Netherlands in September and October 
2015 showed a rather poor correlation of R2 = 0.39 (Fig. 1, details in Van Wee et al., 
2016). The data set analysed consisted of 70 data pairs: ten remote sensing data points 
(DMC satellite; 22 x 22 m grids) were randomly chosen from each field and paired to in-
grid near sensing data (nearest neighbour approach). Individual fields showed correlations 
from 0.12 to 0.75, ranging from very poor to good. A part of the poor correlation is 
explained by the fact that the near sensor data of the Yara N-Sensor (line scan) have a 
different resolution than the grid data. In Fig. 2 we show a rather good correlation between 
remote (DMC satellite) and near (N-Sensor) measured biomass indices of four potato 

                                                

 
2 www.spaceoffice.nl/nl/Satellietdataportaal, free satellite images 
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crops on nine observation dates in 2014 (R2 = 0.69, Holleman, 2015). For the same fields 
Holleman also showed a good correlation between remote (Spot 6/7) and near (N-Sensor) 
biomass indices (R2 = 0.71, data not shown). Lageweg et al. (2016) showed a good 
correlation between NDVI data of an onion crop in 2014 measured by Spot 6/7 satellite 
and NDVI data measured in the crop with GreenSeeker RT100 sensor (R2 = 0.82, data not 
shown). 

We conclude that correlation between remote and near biomass sensing data improves 
when the data set contains data from less fields. Variation between fields (for instance 
variety, previous crop, soil type) has a negative effect on correlations. It is important to 
remove irrelevant variation in data sets in order to get better biomass maps of arable crops 
that can be used for yield prediction and task maps. 

  

 
Figure 1. Biomass indices from tractor mounted line scan sensor (Yara N-Sensor, S1) and 
satellite mounted grid scan sensor (DMC satellite, NDVI) determined in September 2015 
(end of season) in seven potato crops in The Netherlands plus statistics of the regression 
analysis (R2 = 0.39).  
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Figure 2. Biomass indices from tractor mounted line scan sensor (Yara N-Sensor, S1) and 
satellite mounted grid scan sensor (DMC satellite, NDVI) determined in may - September 
2014 in four potato crops in The Netherlands plus statistics of the regression analysis (R2 
= 0.69).  

 

Topic 2: Correlation between biomass data and crop yield 
 

We analysed data from two crops: winter wheat and onion.  

For winter wheat, we studied the correlation between remote (Formosat-2) measured 
NDVI data and site-specific yield data (season 2012-2013, see Fig 3a, and Feher, 2014). 
We had ten satellite sensor observation dates in the period May 1 until August 2, 2013. 
The correlation between NDVI and yield on individual observation dates was very poor to 
moderate, with R2 ranging from 0.02 to 0.61 (Table 1). Best result in correlation between 
NDVI and final yield was obtained on July 8, 2013 and the worst on July 22. There was 
no trend to a better correlation towards the end of the season. 

 

Table 1. R² correlation per date between mean NDVI values and final yield in 2013 

 
 

Further analysis on the correlation between the seasonal mean NDVI (May 1 until August 
2) and yield showed a high correlation (R2 = 0.79, Fig 4a). The seasonal mean NDVI 
gives a better estimate of the final yield of the wheat crop than the individual NDVI data. 
We also observed that NDVI data measured in the tillering crop phase had very poor 
correlation with final yield. This can be explained by the fact that the crop can compensate 
less tillers with more and bigger kernels per tiller. The left part of the field (Fig. 3a) had 
half the plant density than the right part of the field. The lower plant density was 
compensated with more tillers per plant.  
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Figure 3a and 3b. Yield maps of winter wheat crop 2012 – 2103 (left, average 11.3 ton 
wheat per ha, gross) and onion crop 2014 (right, legend in kg per m2, average 81 ton onion 
per ha, gross) in The Netherlands as presented in QGIS. Field size was ca 10 ha.  

 

 
Figure 4a and 4b. Correlation between seasonal mean NDVI biomass data and crop 
yields in The Netherlands. On the left, data of a wheat crop and mean NDVI data from 
early May to early August R2=0.79). On the right, data of an onion crop and NDVI data 
from June and July (R2=0.49). See also Fig. 3a and 3b. 
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(June 1 until July 31) and yield is shown in Fig 4b. The correlation between seasonal 
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inspection of plotted results and NDVI-patterns tended that field parts with high NDVI 
values also had more biomass.  
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We conclude that biomass maps can be used to estimate wheat and onion yield, as shown 
in this paper. Variation causing errors in the biomass sensing systems and the yield 
sensors do not allow accurate yield predictions yet. Efforts in R&D should be made to 
remove these errors.  

 

Topic 3: Biomass data and task maps  
 

We studied two different potato crops to analyse the practical use of biomass data and task 
maps. Although we sometimes observed poor correlations between sensor based biomass 
maps and yield, we expected that farmers can use the biomass maps in task maps. In Fig 5 
we show two successful examples of use of biomass maps in task maps. Fig 5a shows a 
variable rate dosing map of Reglone (potato haulm killing) in potato based on a Spot 6/7 
NDVI map measured in September 2015. Fig. 5b shows a variable rate top-dress N dosing 
map based on N-Sensor measurement in July 2015. Through smart integration of sensor 
data, decision support and implements, farmers can save on inputs even with the use of 
not yet optimal biomass maps. 

  

 

  
Figure 5a and 5b. Examples of use of biomass maps based dosing maps in The 
Netherlands. On the left, potato haulm killing dosing map based on Spot 6/7 data 
(September 2015). On the right, a top-dress nitrogen map for a potato crop (July, 2015)  
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Appendix  
Table A-1. Overview of reflection based biomass indices (Kempenaar et al., 2014).  
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Index Name Formula Authors (year) 
    
NDVI Normalized Difference 

Vegetation Index 
(Rnir-Rred)/(Rnir+Rred) (Rouse et al. 

(1974) 
RVI Ratio Vegetation Index 

 
Rnir/Rred Jordan (1969) 

WDVIr WDVIr, with red light reflection 
in formula 

R810-(R810-R660)xR660 Clevers (1989) 

WDVIg WDVIg, with green light 
reflection in formula 

R810-(R810-R560)xR560 Bouwman 
(1992) 

REP-LI Red Edge Position: Linear 
Interpolation method 

700+40x(Rre-R700)/(R740-R700) ; 
and Rre = (R670+R780)/2 

Guyot et al. 
(1988) 

MTCI Meris Terrestrial Chlorophyll 
Index 

(R754-R708)/(R708-R680) Dash, Curran 
(2008) 

TCARI Transformed Chlorophyll 
Absorption in Reflectance Index 

3x((R700-R670)-0.2x(R700-
R550)x(R700/R670)) 

Haboudane et 
al. (2002) 

TCARI/ 
OSAVI 

TCARI with Optimized Soil-
Adjusted Vegetation Index 

1.16x(R800-R670)/ 
(R800+R670+0.16) 

Haboudane et 
al. (2002) 

MCARI Modified Chlorophyll 
Absorption Index   

(R700-R670)-(0.2x(R700-
R550)x(R700/R670)) 

Daughtry et al. 
(2000) 

DCNI Double-peak Canopy 
Nitrogen Index 

((R720-R700)/(R700-R670)/ (R720-
R670+0.03)) 

Chen et al. 
(2010) 

NDRE Normalized Difference 
Red Edge index 

(R780-R720)/(R780+R720) Eitel et al. 
(2010) 

Rnir = reflection at near-infrared wavelengths, Rred at red light wavelengths, other reflections at  
specified wavelengths. 
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