
In-season estimation of barley biomass with plant 
height derived by terrestrial laser scanning 

Nora Tilly 

Institute of Geography (GIS & Remote Sensing Group), University of Cologne, Cologne, Germany  

A paper from the Proceedings of the 
13th International Conference on Precision Agriculture 

July 31 – August 4, 2016 
St. Louis, Missouri, USA 

 
Abstract: The monitoring of plant development during the growing season is a fundamental base 
for site-specific crop management. In this regard, the amount of plant biomass at a specific 
phenological stage is an important parameter to evaluate the actual crop status. Since biomass is 
directly only determinable with destructive sampling, methods of recording other plant 
parameters, such as crop height or density, which are suitable for reliable estimations are 
increasingly researched. Over the past two decades the research interest has focused on non-
destructive remote sensing approaches. They have the main benefit that plant parameters can be 
obtained without disturbing the plant growth. Terrestrial laser scanning (TLS) is known as 
promising tool for determining plant height at field scale and monitoring its development. In former 
studies, the usability of biomass regression models (BRMs) for estimating spring barley biomass 
based on TLS-derived plant height across-season was shown. However, from a field 
management perspective the in-season estimation of the actual biomass is more important. The 
herein presented study investigates the accuracy of these proven models for estimating the 
actual crop biomass at a specific date during the growing season. Overall the validity of all BRMs 
for across-season analyses is supported by high R² values of up to 0.73 and 0.85 between 
measured and estimated values for fresh and dry biomass, respectively. The R² values for the 
campaign-wise separated analyses are generally lower (ranging from 0.01 to 0.23). In contrast, 
strongly reduced root mean square error (RMSE) and relative RMSE values for these analyses 
underline the benefit of a campaign-wise separated investigation. In conclusion, the results verify 
that TLS-derived plant height is a suitable estimator for crop biomass at a specific date. 
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Introduction 
The growing world population demands a secure food supply, which increases the pressure on 
the conventional agricultural sector and requires an improvement of crop management methods. 
In this context, site-specific approaches increasingly gain interest to improve the productivity of 
crops and to minimize the environmental pollution (Whelan and Taylor 2013). Essential 
prerequisites for optimizing the field management are to assess the current state of the crops and 
to monitor changes. This current state can be evaluated by the actual biomass as an important 
parameter, which is however directly only determinable with destructive sampling. With the aim of 
avoiding destructive measurements, estimations based on remote sensing methods are widely 
investigated over the last several decades. These non-contact surveys prevent disturbing the 
plants by the taking of measurements (Liaghat and Balasundram 2010). Reviews of current 
approaches are given for example by Mulla (2012) and Liaghat and Balasundram (2010).  

Even though the required temporal and spatial resolution is very case specific, timely flexible 
systems, which furthermore allow a high spatial resolution, are generally required for surveys at 
field scale, since influencing environmental factors are variable in time and space (Atzberger 
2013). Measurements of the reflected radiation from plants are widely used to calculate 
vegetation indices (VIs), which allow the estimation of plant parameters such as leaf area index 
(LAI) or biomass (Casanova et al. 1998; Guyot et al. 1992; Haboudane et al. 2004). However, 
several studies show that VIs tend to saturate when high LAI or biomass values are reached 
(Heege et al. 2008; Thenkabail et al. 2000). Hence, other plant parameters, such as plant height, 
are investigated concerning the applicability as estimator for biomass. At the field scale, different 
sensors, such as light curtains (Montes et al. 2011), ultrasonic sensors (Reddersen et al. 2014), 
radar sensors (Kim et al. 2013), or terrestrial laser scanners (Ehlert et al. 2010) are investigated 
regarding their usability for measuring plant height as estimator for crop biomass.  

In former studies, the herein used approach with terrestrial laser scanning (TLS) was 
demonstrated as promising method for determining plant height at field scale and monitoring its 
development (Hoffmeister et al. 2010; Tilly et al. 2014). The underlying concept thereby is the 
generation of crop surface models (CSMs) for the calculation of spatially resolved plant height, as 
shown in Fig. 1. At the beginning of the growing season a digital terrain model (DTM), 
representing the bare ground of the field is established from the TLS data as reference surface. In 
an almost biweekly rhythm across the growing season the crop canopy is then captured with the 
scanner and stored as a CSM. By subtracting the DTM from a CSM, plant heights are spatially 

measured.  

This method of capturing plant height and monitoring its development across the growing season 
was successfully applied for a case study on spring barley (Tilly et al. 2015). In conjunction with 
destructive sampling, biomass regression models (BRMs) were empirically developed to estimate 
the crop biomass from the plant heights captured in this way. The high usability of BRMs based 
on the CSM-derived plant heights could be demonstrated for across-season biomass estimations 
in that study. Furthermore, the comparison to BRMs based on VIs showed the robustness of 

Fig. 1. Principle of crop surface models (CSMs). Figure taken from Tilly (2015). 
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estimations based on plant height. However, due to the very different amounts of biomass 
between the respective campaign dates, the root mean square error (RMSE) is fairly high when 
calculated for the entire data set. Since, the accurate in-season estimation of the actual biomass 
is from a field management perspective more important, the herein presented study investigates 
the accuracy of these proven models for estimating the actual crop biomass at a specific date. 

Methods 
The measurements were carried out at a field experiment campus of the Faculty of Agriculture, 
University of Bonn (Germany), which is hosted in the nearby village Klein-Altendorf (50°37′ N, 
6°59′ E). The area is situated on the main terrace of the lower River Rhine basin and is well 
suitable for crop cultivation due to the underlying clayey silt luvisol and good climatic conditions 
such as a yearly precipitation of about 600 mm and a daily average temperature of 9.3 °C (Uni 
Bonn 2010a, 2010b). Across the growing season of 2014 a field experiment was monitored where 
six cultivars of spring barley (Barke, Beatrix, Eunova, Trumpf, Mauritia, and Sebastian) were 
cultivated with two levels of N fertilization in 36 small-scale plots (3 × 7 m). The experiment and 
measurements were carried out within the interdisciplinary research network CROP.SENSe.net 
(www.cropsense.uni-bonn.de). This research project focused on non-destructive sensor-based 
methods for detecting crop status. A brief description of the measuring and data handling process 
is given in the following, however since the focus of this study lies on the accuracy of the proven 
models for estimating the actual crop biomass at a specific date, please see Tilly et al. (2015) for 
further detail. 

Field measurements 
In this study, remote sensing measurements from a TLS system and destructive measurements 
of biomass were used. The measurements from four campaigns during the pre-anthesis are 
regarded herein since an appropriate field management during these stages can mainly influence 
the plant development. The campaigns were carried out at approximately BBCH stage 29 (end of 
tillering), 31 (beginning of stem elongation), 49 (end of booting), and 56 (middle of heading). In an 
additional earlier campaign shortly after sowing, the bare ground of the field was captured with 
the scanner before the plants were visible.  

For the TLS measurements a time-of-flight scanner was used. The basic concept of such 
scanners is that the travel time, or time-of-flight, from transmitting a signal until its return after the 
reflection on an object is measured. The range between the scanner and this reflection point is 
then calculated as half of the entire path from the measured time and the speed of light, which is 
known to be ~0.3 m/ns. The laser beam is generated in the bottom of the device and spatially 
distributed by a mirror or prism, which rotates around its horizontal axis, inside the scanner head, 
which rotates around the vertical axis. Main characteristics of the herein used Riegl LMS-Z420i 
(Riegl LMS GmbH 2010), which operates with a near-infrared laser beam, are that the beam 
divergence is 0.25 mrad and the measuring rate is 11,000 points/sec. Due to the scanning 
mechanism, the field of view is up to 80° in the vertical and 360° in the horizontal direction. In this 
study resolutions between 0.034° and 0.046° were used. Moreover, the digital camera Nikon 
D200 was mounted on the laser scanner. Point clouds gained from the laser scanner can thus be 
colorized from the recorded RGB-images. In addition, the system was mounted on the hydraulic 
platform of a tractor, raising the sensor to approximately 4 m above ground to achieve the best 
possible coverage of the crop surface (Fig. 2). This set-up also allowed a steep angle between 
scanner and the investigated area, which in return enabled the best possible homogenous 
penetration of the vegetation. The field was scanned from its four corners in each campaign to 
lower shadowing effects and to attain an almost uniform spatial coverage of the field. The 
coordinates of each scan position and an additional reference target were measured with the 
highly accurate RTK-DGPS system Topcon HiPer Pro (Topcon Positioning Systems 2006). These 
information were used for the georeferencing and co-registration of both the different positions of 
one campaign and the data sets of different campaigns in the post-processing.  

At each campaign date, the above ground biomass of a 0.20 × 0.20 m area was destructively 
taken in a defined sampling area of each plot. This area was neglected for the remote sensing 
measurements. In the laboratory, the plants were cleaned and then the fresh weights were 
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measured. After drying the samples for 120 h at 70 °C, the dry biomass was also weighted. 
Finally both values were extrapolated to g/m². 

Post-processing 
In the scanner software RiSCAN Pro, the TLS data were merged, cleaned, and the area of 
interest was extracted per campaign. The point clouds were then filtered with a scheme for 
selecting minimum or maximum points to detect the bare ground or the crop surface, respectively 
(Fig. 3 (A)). After importing the final point clouds in Esri ArcGIS Desktop 10.2.1 the DTM 
representing the bare ground at the first campaign date and each CSM of the following 
campaigns were interpolated using the inverse distance weighting (IDW) algorithm. Since the 
exact, deterministic IDW algorithm retains measured values at their sample locations the 
accuracy of measurements with a high density is maintained (Johnston et al. 2001). The result of 
an interpolation was a raster data set with a spatial resolution of 1 cm. Based on the concept 
shown in Fig. 1, raster data sets of plant height were calculated from these CSMs with the DTM 
(Fig. 3 (B)). The plant heights were then averaged plot-wise, allowing a common spatial base with 
the destructive biomass measurements to be attained (Fig. 3 (C)). Previously, each plot was 
clipped with an inner buffer of 0.50 m to prevent border effects and the sampling area of the 

destructive measurements was cut off. 

  

(A) (B) 

Fig. 2. Instrumental set-up: (A) Tractor with hydraulic platform; (B) Terrestrial laser scanner 
Riegl LMS-Z420i with digital camera Nikon D200 and RTK-DGPS receiver on top. 

Interpolating Averaging 

Fig. 3. Steps from TLS-derived point cloud to plot-wise averaged values: (A) Filtered point cloud representing the crop 
surface; (B) Raster data set of plant height, calculated from CSM minus DTM; (C) Plot-wise averaged plant heights. 

(A) Point cloud 
 

(B) Raster (CSM - DTM) (C) Plot-wise averaged 
values 

∅ (m):  0.36    0.37   0.52    0.39 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

∅ (m):  0.51    0.40   0.37    0.42 
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Biomass regression models 
The plot-wise averaged values of plant height and biomass were used to develop the BRMs for 
fresh and dry biomass, considering the values of all four campaigns for the model calibration (for 
each BRM n = 144). For both of them, the models were established with a linear function (1), an 
exponential function (2), and a power function (3). The coefficient of determination (R²) between 
plant height and measured biomass across all campaigns was used to evaluate the model 
calibration.  

 𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑏 ∙ 𝑝𝑝𝑏𝑛𝑡 ℎ𝑒𝑏𝑒ℎ𝑡 + 𝑏  (1) 
where 𝑏 = slope, 𝑏 = intercept 

 𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑏 ∙ 𝑒𝑏 ∙ 𝑝𝑝𝑝𝑝𝑝 ℎ𝑒𝑒𝑒ℎ𝑝  (2) 
where 𝑏 and 𝑏 = factors, 𝑒 = base of the natural logarithm 

 𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑏 ∙ 𝑝𝑝𝑏𝑛𝑡 ℎ𝑒𝑏𝑒ℎ𝑡𝑏  (3) 
where 𝑏 and 𝑏 = factors 

These BRMs were then applied to estimate the biomass from the CSM-derived plant height. The 
results were evaluated by calculating the R² (measured vs. estimated biomass), the root mean 
square error (RMSE), and the relative RMSE (rRMSE). Since the aim of this study was to 
investigate the accuracy of the BRMs for in-season estimations at a specific date, the validation of 
the results was performed across all measurements, but moreover for each of the four campaigns 
separately. 

Results 
The TLS-derived point clouds were used to interpolate CSMs and spatially calculate plant height. 
Examples of the resulting raster data sets of plant height are presented in Tilly et al. (2015). In 
that study the CSM-derived plant height values were also validated against manual reference 
measurements. An R² of 0.98 between the CSM-derived and manual measured plant heights was 
reached (Tilly et al. 2015). The CSM-derived plant height can thus be regarded as reliable data 
source for the herein conducted analysis. 

The spatially resolved plant height values were averaged plot-wise before establishing the BRMs 
to achieve a common spatial base with the biomass measurements. Table 1 shows the statistics 
of the CSM-derived plant height and the biomass for the four campaign dates (each n = 36) and 
for the across-season averaged values (n = 144).  

Table 1. Statistics for the plot-wise averaged CSM-derived plant heights and destructively taken fresh and dry biomass  
(: mean value; min: minimum; max: maximum; SD: standard deviation). For each date n = 36. 

    CSM-derived plant height (m) Fresh biomass (g/m²) Dry biomass (g/m²) 
 BBCH  min max SD  min max SD  min max SD 

1. 29 0.17 0.12 0.25 0.03 656.28 266.25 1116.50 202.07 89.01 33.00 155.25 27.66 
2. 31 0.41 0.34 0.52 0.04 2227.08 1226.75 3236.50 531.72 289.83 165.75 417.75 66.03 
3. 49 0.63 0.53 0.70 0.04 2825.48 1643.75 4162.00 603.19 465.49 276.62 706.65 97.89 
4. 56 0.81 0.69 0.99 0.05 3185.13 2106.50 5433.25 687.74 777.23 486.35 1271.35 156.02 

Mean 0.51 0.42 0.62 0.04 2223.49 1310.81 3487.06 506.18 405.39 240.43 637.75 86.90 

The plot-wise averaged values were used to express the relation between plant height and fresh 
or dry biomass as BRMs. Fig. 4 shows this relation between plant height and the biomass values. 
Moreover, the resulting regression lines and equations are given for the linear, exponential, and 
power function. Generally, higher R² values and a better fit of the curves can be stated for the dry 
biomass models. A larger scattering occurs in the scatterplot for fresh biomass. The best R² 
values are achieved with the power function for fresh and dry biomass.  

Each of the three BRMs was then used to estimate the biomass based on the averaged 
CSM-derived plant height. Fig. 5 shows the scatterplots of measured vs. estimated fresh and dry 
biomass. Generally a large scattering has to be stated again for the fresh biomass values. This is 
very likely caused by the data scattering during the model calibration. Nevertheless, the best 
results are attained with the linear and power function (both R² = 0.73). Moreover the estimated 
biomass from these two BRMs correspond well with the measured biomass (slopes are close to 
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the 1:1 line). The results of the dry biomass estimation are generally better, with a lower 
scattering and higher R² values of about 0.85 for all BRMs. The estimated biomass from all BRMs 
correspond well with the measured biomass (slopes are close to the 1:1 line). 

Since the focus of this study was on the accuracy of the models for in-season estimations at a 
specific phenological stage, the R², RMSE, and rRMSE for fresh and dry biomass (measured vs. 
estimated values) were calculated across all measurements but moreover for each of the four 
campaign dates separately (Table 2). The across-season R² values are generally higher (R² 
ranging from 0.62 to 0.85) than the values for the campaign-wise separated analyses (R² ranging 
from 0.01 to 0.23). Even though the R² values for all campaigns show a poor performance, 
differences between the single dates can be observed. While the R² values for first and fourth 
campaign do not show any relation between the measures (R² < 0.05), values of 0.15 to 0.23 are 
reached for the second and third campaign. 

The RMSE values of the across-season analyses are considerably high (fresh biomass: 
~580 g/m² to ~760 g/m² and dry biomass: ~110 g/m² to ~120 g/m²) compared to the overall mean 
values of ~2,200 g/m² and ~400 g/m² for fresh and dry biomass, respectively (Table 1). These 
high values are very likely caused by the large value ranges between the first and last campaign 
from ~660 g/m² to ~3,200 g/m² and ~90 g/m² to ~780 g/m² for fresh and dry biomass, 

Fig. 4. Relation between CSM-derived plant height and fresh biomass (left) or dry biomass (right) (each n = 144) and the 
resulting BRM functions (linear: black solid line, exponential: green short-dashed line, and power: red long-dashed line). 

Fig. 5. Scatterplots of measured vs. estimated fresh biomass (left) or dry biomass (right) (each: n = 144) with the BRMs 
based on the linear (black solid line), exponential (green short-dashed line), and power (red long-dashed line) function. 
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respectively. 

Hence the campaign-wise separated analyses should be more suitable to evaluate the accuracy 
of the models for in-season estimations. The rRMSE as relative measure is thereby better 
suitable for a comparison between the campaigns than the absolute RMSE values, due to the 
large range of the absolute values. While the rRMSE values for the first two campaigns are 
similar or slightly weaker than the across-season values, the errors could be reduced for the third 
and fourth campaign. Regarding the different models, it is difficult to draw a general conclusion. 
However, the BRMs based on the power function thereby performed mostly slightly better than 
both of the others. 

Table 2. Statistics for the BRM validation based on the linear, exponential, and power function. Values are given 
across-season and for each of the four campaigns separately (measured vs. estimated biomass). R²: coefficient of 

determination; RMSE: root mean square error (g/m²); rRMSE: relative root mean square error (g/m²). 
  Fresh biomass  Dry biomass 
 

 
Linear Exponential Power  Linear Exponential Power 

R² Across 0.73 0.62 0.73  0.84 0.83 0.85 
1 0.02 0.01 0.03  0.04 0.05 0.05 
2 0.16 0.15 0.16  0.15 0.15 0.15 
3 0.22 0.23 0.22  0.21 0.22 0.21 
4 0.03 0.03 0.03  0.02 0.02 0.02 

RMSE Across 579.98 756.98 594.05  109.87 116.60 107.76 
1 344.24 270.47 224.26  46.16 29.22 30.92 
2 626.39 898.59 685.05  71.36 91.28 66.36 
3 577.64 647.99 572.45  112.48 94.38 96.38 
4 707.78 995.79 751.19  168.55 190.48 178.33 

rRMSE Across 0.26 0.34 0.27  0.27 0.29 0.27 
1 0.52 0.41 0.34  0.52 0.33 0.35 
2 0.28 0.40 0.31  0.25 0.31 0.23 
3 0.20 0.23 0.20  0.24 0.20 0.21 
4 0.22 0.31 0.24  0.22 0.25 0.23 

Discussion 
Since biomass is an important parameter in agricultural science, several approaches aim at its 
non-destructive estimation. Recent studies showed that VIs, which have historically been widely 
applied, saturate beyond certain growth stages of plants and are then unsuitable for reliable 
estimations (Heege et al. 2008; Thenkabail et al. 2000). As an alternative, plant height, measured 
with different sensors (Busemeyer et al. 2013; Pittman et al. 2015; Reddersen et al. 2014) is 
used, but less investigated so far. The main benefits of the TLS-based approach applied in the 
herein presented study are the possibility to rapidly and easily measure plant height at field scale 
and the robustness against poor weather conditions. Even though the approach has previously 
been demonstrated as suitable for across-season estimations the question remained whether the 
established models are also applicable for in-season estimations. Hence, the aim of this study 
was to evaluate whether models which are proven for across-season estimations of spring barley 
biomass are usable for in-season estimations at a specific date. 

Common measures for evaluating the quality of estimation models are the R² and the RMSE. It is 
commonly known that models based on multi-temporal data sets (Montes et al. 2011; Reddersen 
et al. 2014) reach higher R² values (> 0.60) than models based on the data of one campaign 
date, with R² values mostly not higher that 0.30 (Aasen et al. 2015). In comparison to those 
across-season studies the herein established models perform equally well with overall better 
results for dry biomass than for fresh biomass. Moreover, the campaign-wise separated analyses 
allowed an evaluation of the models regarding the performance for estimations at a specific 
phenological stages. However, limitations through the measuring process have to be taken into 
account. Since the plot-wise averaged values were used for all calculations, small-scale 
variations within the plots might have been obscured, which can produce errors during the model 
calibration. For test purposes established models based on the data of each individual campaign 
performed very poor, which can be attributed to this issue. For such models, initial data would be 
necessary in which plant height and biomass measurements can be directly linked with a higher 
spatial resolution, e.g. the x, y-coordinates of the destructively taken 0.20 × 0.20 m area should 
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be measured and linked to CSM-derived plant heights only averaged across these small areas. 

Regarding the varying performances of the models for fresh and dry biomass, the only difference 
between the used data sets is the presence of water in the fresh biomass. As shown in Fig. 4, the 
scatterplots of plant height vs. biomass show generally more noise for fresh biomass. It can 
therefore be assumed that the amount of water in the plants is not linked to plant height. This in 
return blurs the BRMs for fresh biomass and leads to less accurate estimations. However, further 
studies are required to investigate this topic. 

As shown in this study, the RMSE, as a common error measure, is fairly high for across-season 
models when comparing it to the mean total biomass amounts, due to the large value range 
across the growing season. The campaign-wise separated calculation are consequently better 
suitable for evaluating the model fit, in particular for the early campaigns with the naturally lowest 
amounts of biomass. Owing to the large value range, the rRMSE was calculated as better 
comparable value. It can overall be summarized that a fairly wide range of values is worthwhile 
for the model calibration, since a certain degree of difference between the individual values is 
necessary. On the contrary, the large value range blurs the results of the model validation 
regarding the RMSE. Hence, it is recommendable to involve the across-season data set in the 
model calibration but validate the accuracy of the model for in-season estimations on campaign-
wise separated data sets.  

Conclusion & Outlook 
The presented study investigated the accuracy of biomass regression models (BRMs) for the 
in-season estimation of spring barley biomass. These already existing BRMs are based on a 
multi-temporal data set and were proven to be suitable for across-season estimations. However, 
for site-specific crop management it is more important that the amount of biomass can be 
accurately estimated at specific phenological stages within the growing season. The root mean 
square error (RMSE), as usual error measure, is influenced by the value range. Since the amount 
of plant biomass strongly increases from the beginning to the end of the growing season the 
value range is large and hence the across-season RMSE is fairly high. However, herein it could 
be shown that the RMSE is much smaller in the campaign-wise separated analyses. The results 
overall suggest that it is recommendable to use multi-temporal, across-season data sets for 
calibrating the BRMs but for evaluating these models regarding an in-season estimation it is more 
advisable to campaign-wise calculate the RMSE or the relative RMSE, as better comparable 
measure. Nevertheless, this study was based on the data set of one year and further research is 
necessary with focus on the transferability of the models to independent data sets. 
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