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Abstract. Remote sensing with small unmanned aircraft systems (sUAS) has potential applications 
in agriculture because low flight altitudes allow image acquisition at very high spatial resolution.  We 
set up experiments at the Oregon State University Hermiston Agricultural Research and Extension 
Center (HAREC) to assess advantages and disadvantages of sUAS for precision farming. In 2014, 
we conducted an experiment in irrigated potatoes with 4 levels of artificial infestation by Colorado 
Potato Beetles. A hexacopter sUAS was flown at two altitudes with a Tetracam Multi Camera Array 
with 5 bands and one up-looking incident light sensor. After just one day, plant damage was visible, 
but not correlated with the total number of beetles per plot. Plot-scale spectral vegetation indices, 
such as NDVI, were not correlated with visible damage. However, the sub-plot area of damage from 
object-based image analysis was highly correlated. Traditional methods for satellite data may not 
downscale well for remote sensing from sUAS. Object-based image analysis and computer vision 
have potential for early detection and reduced cost. 
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Introduction 

Potatoes were the first crop for which insecticides were routinely used (Hare 1990) and potatoes 
require more pesticides than other major crops (Rondon 2012a,b). Integrated pest management is a 
collection of methods that consider the whole system to keep insect damage to acceptable levels.  
Colorado potato beetles (CPB), both larvae and adults, are voracious leaf eaters that can rapidly 
defoliate a field of potatoes (Hare 1990). Monitoring potato plants for missing leaves and other 
damage over the growing season is the first step in determining what strategies should be employed 
for insect control (Rondon 2012a, b).  

Monitoring crop production using unmanned aircraft was envisioned long before the technology 
evolved to make it practical (Jackson & Youngblood 1983). Remote sensing using small unmanned 
aircraft systems (sUAS) acquires imagery at low altitudes for higher spatial resolution. Remote 
sensing from sUAS platforms may be ideal for insect pest detection (Yue et al. 2012). What is the 
best method to analyze high-spatial-resolution imagery in order to detect the presence of potato 
damage indicating possible infestation by CPB? Traditionally, spectral vegetation indices such as the 
Normalized Difference Vegetation Index (NDVI, Rouse et al. 1974; Tucker 1979) are correlated with 
the amount of biomass or damage over some spatial extent. Object-based image analysis (OBIA) 
capitalizes on high-spatial resolution to group adjacent pixels with similar spectral and textural 
properties (Laliberte et al. 2004, 2010; Blaschke 2010). More recently, Structure from Motion (SfM) 
photogrammetry was used to determine plant height, which is often a reliable indicator of growth and 
biomass (Turner et al. 2012; Westoby et al. 2012; Bendig et al. 2013, 2014). 

We set up an experiment in which CPB were added to potato plants to vary the amount of infestation 
during the vegetative growth stage. The objective was to compare spectral indices, object-based 
image analysis, and SfM point clouds for early detection of CPB damage. 

Methods 

The study was conducted at Oregon State University’s Hermiston Agricultural Research and 
Extension Center (HAREC) located in Hermiston, Oregon (45.82021° N and 119.28364° W, at an 
elevation of 180 m). July is the hottest month with average high and low temperatures of 32° C and 
14° C, respectively. The average annual precipitation is 266 mm, with 51 mm during the growing 
season. The soil type is an Adkins Sandy Loam (coarse-loamy, mixed, superactive, mesic Xeric 
Haplocalcids).  

Small plots (2.6 × 9.2 m) of potatoes (Solanum tuberosum L. ‘Ranger Russet’) were established on 
22 April 2014 using a randomized block design with four treatments and four replications (Fig.1A). 
Irrigation, herbicides, and fungicides were applied in the recommended amounts. Fertilization was 
about 450 kg/ha nitrogen, 310 kg/ha phosphorus, 220 kg/ha potassium, and 80 kg/ha sulfur. No 
insecticides were applied. 

On 9 June 2014, different numbers of CPB were placed in each plot: low – 1.5 CPB/plant; medium – 
4.5 CPB/plant, and high – 7.5 CPB/plant (Fig.1A). The control treatment had no additional CPB, any 
larvae or adults found in the control plots either emerged from the soil or migrated from other areas. 
There was no apparent plant damage on 23 June 2014. However, on the next day,24 June 2014, 
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visual plant damage was obvious. The first CPB population survey was conducted on 2 July 2014. 

All sUAS flights were conducted under a Certificate of Authorization from the United States Federal 
Aviation Administration. A “Spreading Wings” S800 hexacopter (DJI, Shenzhen, Guangdong, China) 
with a six-band Mini Multi Camera Array (mini-MCA, Tetracam, Inc., Chatworth, CA) was flown over 
the plots on 10 days in June 2014. The channels were narrow-bands (center wavelength ± 10 nm) in 
the blue (470 nm), green (550 nm), red (660 nm), red-edge (710 nm), and near-infrared (NIR, 810 
nm). The sixth channel was used for an upwards-looking incident light sensor (Heinhold 2014). Using 
an autopilot, the sUAS flew over the plots first at 60 m and then at 30 m altitude above ground level. 
The focal length of the Mini-MCA was 9.6 mm, so pixel sizes were about 30 and 15 mm for 60 m and 
30 m altitude, respectively. 

 

Fig. 1. A. Plot layout for additional Colorado potato beetles (CPB) on ‘Ranger Russet’ potatoes. B. Color-infrared orthomosaic 
from flights on 23 June 2014 at 60 m agl. C. Color-infrared orthomosaic from flights on 24 June 2014 at 60 m agl.  

 
Fig. 2. NDVI feature extraction on 24 June 2014 from images acquired at 30 m altitude. Plots are aligned the same as Fig. 1A. Red 

areas are defined as CPB damaged. 

Only the image data acquired on 23 and 24 June 2014 were analyzed. The images were initially 
processed using Tetracam’s PixelWrench-2 software to reformat raw imagery to the Tagged 
Interchange File Format (*.tif) and correct digital numbers to surface reflectance, scaled from 0 to 
255. Photoscan Pro (Agisoft, St. Petersburg, Russia) was used to create orthomosaic images and 
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three-dimensional surface models using the SfM algorithm. Unfortunately, ground control points were 
not established so the orthomosaics were created only from the sUAS log files. The Environment for 
Visualizing Images (ENVI) version 5.3 (Excelis Visual Solutions, Harris Corporation, Boulder, CO) 
was used to calculate spectral vegetation indices and to classify damage with ENVI Feature 
Extraction based on edge detection. The scale and merge parameters were both 70 to define fewer 
objects and to more aggressively merge objects, respectively (Fig. 2).  

Various spectral indices were calculated; however, results from the different indices were highly 
correlated. Therefore, only NDVI was used:  

 NDVI = (RNIR – RR) / (RNIR – RR) (1) 

where RNIR = NIR reflectance and RR = red reflectance (Rouse et al. 1974). A threshold-based 
estimate of damage was determined for each plot from the percentage of pixels with NDVI ≤ 0.8 from 
the cumulative NDVI frequency distribution. Spearman rank correlation coefficients (rs) were 
calculated and t-tests were used to determine significance (Steel and Torrie 1960). 

Results and Discussion 

There was no indication of potato leaf loss or plant damage from the images acquired on 23 June 
2014 (Fig. 1B). There were visibly-damaged areas in all plots on the very next day (Fig. 1C). The 
least impacted plots were 201 and 401, and the most impacted plot was 202 (Fig. 1C). The number 
of CPB found in each plot on the first census and a visual ranking of damage (least to most) were not 
related to the numbers of artificially applied CPB from the experimental treatments (data not shown).  

There was no relationship (rs = 0.00) between the visual damage ranking and CPB numbers in each 
plot (Fig. 3A). Also, plot average NDVI was not related (rs = 0.23) to the visual ranking of damage 
(Fig. 3B). Mean NDVI was high for all plots at both 30 m and 60 m altitudes with a narrow range of 
0.85 to 0.90 (Fig. 3B). A threshold of NDVI ≤ 0.80 was determined for classification of damage/no 
damage, because the resulting spatial patterns of pixels classified as damaged were similar to the 
spatial patterns of damage from visual assessment. 

 
Fig. 3. CPB damage per plot was ranked from least to most. A. The number of CPB counted per plot on 2 July 2014.  

B. Plot-mean NDVI on 24 June 2014 from an altitude of 30 m.  
 

However, the number of pixels classified as damaged from an NDVI threshold was not related (rs = 
0.27) to the visual ranking of CPB damage (Fig. 4A). Image objects defined by edge features were 
classified as damaged if the object’s NDVI ≤ 0.80 (Fig. 4B). The ranking of visual damage was highly 
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correlated to the plot object area classified as damaged (rs = 0.85, t = 6.08 with 14 degrees of 
freedom). 

The difference between classifications using an NDVI threshold (Fig. 4A) and using objects from 
NDVI feature extraction (Fig. 4B) may not be important depending on the objective. If detection of 
plant damage and its location was the goal, then the NDVI threshold would be sufficient, because the 
threshold was selected based on the visual spatial paterns. However, if the area of damage is used 
to trigger different options available from Integrated Pest Management, then feature extraction 
methods would have to be considered.  

 

 
Fig. 4. Analysis of the 24 June 2014 images from an altitude of 30 m:  A. Area (% of plot) classified with CPB damage using an 

NDVI threshold of ≤ 0.80.  B. Object area classified with CPB damage using feature extraction of the NDVI image.   

. 

For the most impacted plot (202, Fig. 1A), the area classified as damaged was less than 10%, which 
was too small to affect plot mean NDVI. Based on the plot area, an equivalent satellite pixel size 
would be about 5 m; the NDVI values (Fig. 3B) suggest that multispectral satellite with this pixel size 
would not detect the changes that occurred over the 1 day (0.1 area × 0.6 NDVI + 0.9 area × 0.9 
NDVI = 0.87). Hunt et al. (2007) used models and hyperspectral data from the Airborne Visible 
Infrared Imaging Spectrometer to determine that an area of at least 10% is needed to detect the 
spectrally-distinct flower bracts of leafy spurge by spectral unmixing using the Spectral Angle 
Mapper.  Therefore, there is say a 50:50 chance that hyperspectral sensors with 5-m pixel sizes 
would not have detected the area damaged by CPB. As the 2014 growing season progressed, CPB 
damage accumulated to over 75% of the area in each plot.  At such high levels of damage, it is likely 
that any method of remote sensing would have been successful.  

Structure from motion point clouds are intermediate photogrammetric products from orthomosaicing 
numerous overlapping images (Turner et al. 2012; Westoby et al. 2012). With higher spatial 
resolution available from low-altitude sUAS, digital surface models show spatial variations in plant 
height (Bendig et al. 2013, 2014). We constructed four digital surface models (2 dates × 2 altitudes) 
from sUAS point clouds and found that depressed areas in Fig. 5B corresponded with areas of CPB 
damage in Fig. 1C. In this experiment however, the quantitative information on plant height was not 
accurate because the digital surface models had overall features not related to the flat soil surface. 
There was an overall convex shape in Fig. 5A and an overall concave shape in Fig. 5B. From Agisoft 
LCC support personnel, the most likely reason for the overall shapes was that we did not place 
visible ground control points in the experimental study area. Currently, there are substantial costs for: 
(1) acquiring dense coverage of aerial images from sUAS and (2) for computer processing. 
Therefore, acquiring and processing SfM point clouds may be too expensive for some applications.  

There are many options in workflows for acquiring and analyzing sUAS imagery (Torres-Sánchez et 
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al. 2013; Mathews 2014; Salamí et al. 2014). For determining in-season nitrogen fertilizer 
requirements, Hunt et al. (2014) suggested that transects of single images over large fields would be 
most cost effective, because variation of fertilizer requirements is largely caused by variation in soil 
properties. Each image should have ultra-high spatial resolution to determine plant cover and 
chlorophyll content of single leaves. With insect pests, the pattern of damage is unpredictable, so 
frequent, continuous coverage may be required. However, if the spatial distribution of damage is 
clumped (as in Fig. 2), then pixel sizes could be somewhat larger and would still be effective. 

 

 

Fig. 5. True-color SfM perspectives looking north-east on A. 23 June 2014 and B. 24 June 2014. Damage from CPB created 
depressions in the canopy surface model. Altitude of sUAS was 30 m. 

Conclusions  
Leaf and plant damage caused by Colorado potato beetles was spatially unpredictable and appeared 
just over one day, so frequent sUAS flights with extensive coverage were needed for early detection. 
Based on calculations and ignoring problems with cloud cover, satellite data with 5-m pixels would 
not be effective for monitoring CPB damage. Feature extraction based on object-based image 
analysis was the most accurate method for detecting the area with plant damage; however, this 
method required extensive operator intervention for success. We are intrigued by the potential using 
plant height from SfM point clouds, because undamaged plants could serve as field-by-field 
references to determine relative heights for damage assessment. 
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