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Abstract. Precision agriculture (PA) technologies used for identifying and managing within-field 
variability are not widely used despite decades of advancement. Technological innovations in 
agronomic tools, such as canopy reflectance or electrical conductivity sensors, have created 
opportunities to achieve a greater understanding of within-field variability. However, many are 
hesitant to adopt PA because uncertainty exists about field-specific performance or the potential 
return on investment. These concerns could be better addressed by understanding where variability 
in soil physical and chemical properties may have the greatest effect on crop responses to inputs, 
such as nitrogen fertilizer. Therefore, identifying fields that exhibit the most variation in soil 
characteristics (e.g. clay and organic matter content) and developing an indicator of variation that has 
the potential to affect crop responses to inputs could greatly advance PA adoption and use. The 
objectives of this research were to: 1) quantify the amount of potential soil variability over a large 
region, 2) generate an index that numerically identified fields that exhibit degrees of field variability, 
and 3) evaluate spatial clustering of variability over the region. This analysis focused on soil 
variability in agricultural fields across Missouri, USA. We calculated a variability index (VI) for clay 
and organic matter content at two depth increments (0-30 and 0-120 cm) using soil information from 
the National Resources Conservation Service’s (NRCS) Soil Survey Geographic database 
(SSURGO). Ranges in VI for clay at the two depth increments were 1-82 and 1-91 with an average of 
2.4 and 2.2, respectively. Organic matter VI averaged 2.0 and 2.3 for the two increments with 
narrower ranges from 1-42 and 1-29, accordingly. Significant high clay VI clusters at both increments 
were observed mostly along the Missouri River floodplain and across southeastern Missouri along 
the Mississippi River. High organic matter VI clusters exhibited similar distributions along the 
Missouri and Mississippi River floodplains; however, significant clusters of low organic matter VI 
values occurred within the Central Claypan and Southern Mississippi River Alluvium major land 
resource areas. Output from this research could be used as a decision support tool to aide suppliers 
and practitioners in determining the greatest opportunities to implement PA. 
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Introduction 
Sophisticated management of cropland is becoming critically important to ensure that agricultural 
production potential can meet future food demands of the estimated 9.6 billion people by 2050 
(Godfray et al., 2010; U.S. Census Bureau, 2015). The agriculture industry is under pressure to 
implement more efficient strategies to cope with an increasing world population and dynamic 
commodity prices, while abating environmental degradation (Castle et al., 2016; Tey et al., 2012). 
Precision agriculture (PA) is an optimal solution to meet these current and future challenges by 
implementing reduced or targeted placement of agronomic inputs (e.g. fertilizer). Economic or 
production considerations often are the primary drivers for farmers to invest in PA technologies 
(McLoud et al., 2007), and new tools specifically aimed at increasing production efficiency are 
continually being developed; however, a lag exists between technological advancements and PA 
adoption. 

The potential impacts of PA are broad and include input cost reduction, improved management zone 
selection, and enhanced environmental protection. As such, the interest in PA has increased over the 
last two decades, especially with advancements in technology and reduced costs of PA 
instrumentation (e.g. machinery, yield monitors, proximal remote sensors, and GPS guidance 
systems). Even though there are more opportunities now to invest in PA tools that effectively manage 
cropland at various spatial and temporal scales, few producers risk adopting PA technologies 
because of profitability concerns (Erickson et al., 2015; Griffin et al., 2004). Consequently, uniform 
applications of agronomic inputs are routinely implemented for ease and to prevent crop nutritional 
deficiencies; therefore, avoiding risks for significant crop yield losses (Tey et al., 2012). 
Understanding spatial variations in key factors relevant to crop input use (e.g. soil type or weather 
conditions) is an important prerequisite for influencing PA adoption (Karpinski et al., 2015; McBratney 
et al., 2005). Quantifying a baseline measure representing manageable variability within a production 
field could help practitioners better understand basic requirements needed for introducing PA tools 
into general production systems (Mintert et al., 2015). 

Spatial patterns in crop productivity are influenced by variation in certain soil conditions found within 
a field (Cambardella et al., 1994). Numerous studies have investigated different types of indicators to 
help delineate patterns in soil, crop, and landscape characteristics to generate specific management 
practices dedicated to improve crop production (Kitchen et al., 2005). For instance, airborne 
hyperspectral remote sensing data has been used to calculate a vegetation index that used proxies 
for crop chlorophyll content to predict in-field variations of nitrogen (Haboudane et al., 2002). 
Additionally, an economic index, based on biophysical characteristics of crops captured from 
proximal remote sensors, was used as a tool to evaluate production variability (Oliveira et al., 2012). 
The outcome of this research was an ‘opportunity index’ that proved only useful in single-season 
assessments. Karpinski et al. (2015) developed another indicator for categorizing soil heterogeneity 
solely based on winter wheat yield data that helped identify optimal field conditions for applying site-
specific crop management; ultimately helping guide producers toward an increased economic return. 
These studies, and many others (Adamchuk et al., 2004; Haboudane et al., 2002; Kitchen et al., 
2005; Rabbi et al., 2014; Stadler et al., 2015), focused primarily on field-scale applications of 
indicators for variability, which require sophisticated equipment to collect data and generate accurate 
and precise output. Few studies provide decision-support tools for practitioners or agricultural input 
suppliers, who are in the nascent stages of deciding whether to adopt PA technologies or simply 
interested in acquiring important information about broad-scale variations in soils surrounding 
production areas.  

Investing in PA involves many risks, which often are underestimated when variation in costs, yields, 
or soil conditions are assessed at higher levels of aggregation (e.g. county scales) (Tey et al., 2012; 
Ziadat et al., 2015). Additionally, there is a lack in accessibility to decision-support frameworks that 
can easily demonstrate where opportunities exist for using PA to manage crop yield spatial 
variability. Research is needed that focuses on simple and standardized indicators to support basic 
decision processes during initial phases of PA adoption (Oliveira et al., 2012). Therefore, developing 
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decision-support tools that help link the need for PA management with site-specific characteristics 
may help diminish the knowledge gap between understanding field-scale changes in production 
functions and employing the tools necessary to optimize inputs for different management zones. We 
suggest here an approach for informing practitioners, producers, suppliers, farming communities, 
industry, and agronomic scientists about broad-scale measures of spatial patterns of variability in soil 
properties.  

The purpose of this research was to develop a variability index (VI) of clay and organic matter 
content within individually managed fields across Missouri. Clay and organic matter are two major 
indicators for soil N availability; therefore, output from this research was intended to be used as a 
decision-support platform to make better recommendations for identifying fields that could improve 
fertilizer N management. Building a broad-scale understanding of variations in specific soil properties 
is important and may lead to further refinement in agricultural management practices; subsequently 
promoting the efficacy of PA practices. The objectives of this study were to: 1) quantify the amount of 
clay and organic matter variability by field, 2) generate a landscape map that illustrated the VI by 
field, and 3) evaluate spatial distributions of high and low clustering patterns of the VI across groups 
of fields. This last objective would be particularly meaningful for agricultural suppliers that were 
interested in identifying opportunity areas to target their PA products or services.  

Methods and Materials 

Study Area and Datasets 
This study identified soil variability within individual row-crop agricultural fields across Missouri, USA 
(Fig. 1). Boundaries of crop fields were obtained from the analysis of Yan and Roy (2016) where the 
authors used automated computational processes to extract boundaries for the conterminous U.S. 
using time series satellite imagery and edge detection algorithms (Yan et al., 2016). Fields greater 
than 4 ha were identified as manageable and used for this analysis. Clay and organic matter content 
data were obtained from the National Resources Conservations Service’s (NRCS) Soil Survey 
Geographic (SSURGO) database. The SSURGO and field boundary datasets were in vector format 
and intersected with each other to obtain a master dataset containing all soil profile information and 
associated unique field boundary identification numbers using ArcGIS 10.3. 

 
Fig. 1: Study location (Missouri, USA) with major river systems illustrated. The state is 
dissected by major land resource area (MLRA) boundaries.  
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Soil Variability Index 
The VI was determined at two depth increments (top: 0-30 and profile: 0-120 cm) for each variable 
(clay and organic matter) by calculating the ratio between the maximum and minimum soil content 
values from the pool of SSURGO map units for each field. Maximum and minimum values were 
calculated by first converting all variable percentages into content based on bulk density measures 
listed within the SSURGO dataset. The second step was to implement a depth-weighted function that 
sliced the whole profile into 1 cm increments, and the average value per variable was calculated for 
the top and profile. This function was performed for all SSURGO map units that intersected each field 
and a single VI value was attributed to individual fields. A constraint was applied to this ratio if either 
the maximum or minimum value did not represent at least 5% of the total area of the field. If the area 
of the maximum or minimum content did not match the 5% threshold, we subtracted the required 
proportion from the second highest or lowest content to match the 5% threshold. The remaining 
content value was added to the original maximum or minimum value to meet the 5% criterion. All 
calculations were conducted in R statistical software v3.2.1 (R Core Team, 2015) and the AQP 
package (Beaudette et al., 2013).  

Clustering Statistic 
Anselin Local Moran’s I cluster and outlier analysis (Anselin, 1995; Moran, 1950) was used to identify 
groups of multiple fields of similar VI values. Specifically, a local Moran’s I was used to statistically 
identify, at the 95% confidence level, groups of high-high (HH; similar high VI values across multiple 
fields) or low-low (LL; similar low VI values across multiple fields) clustering, in addition to identifying 
anomalies where nearby fields exhibited dissimilarities either as low-high (LH) or high-low (HL). The 
Local Moran’s I statistic was expressed as:  

 
Ii= zi- z�

σ2  ∑ �Wij�zj- z���n
j=1, j≠i  (1) 

 

where z� represented the mean value of VI (z) with the sample number of n determined by a distance 
threshold limit; zi was the value of VI at the location i; z𝑗 was the VI value at other locations (wherej ≠
i); σ2 was the variance of z; and Wij can be a weighting factor between zi and zj that define 
predetermined spatio-temporal relationships among features. The spatial relationships of VI were 
identified in this investigation using an inverse distance squared conceptualization model with no 
weighted factors between values, and a distance threshold of 25 km. The distance parameter was 
used to minimize the number of fields identified without neighbors. All clustering analyses were 
performed using ArcGIS v10.3. 

Results and Discussion 

Soil Variability Index 
 
A total of 176,000 crop production fields were used in the analysis. The VI for clay in the top 
increment (0-30 cm) had a wide range from 1 – 82 with an average of 2.4 and median of 1.7 (Table 
1). The clay VI at the profile increment (0-120 cm) had a slightly broader range from 1 – 91, with a 
similar average and median VI of 2.2 and 1.5, respectively. The similarity between the median clay VI 
values at both depths was indicative of a wide-spread distribution of clay content with minimal 
variation throughout the general profile and across the landscape. The greatest range in clay content 
variability in both increments was delineated by several major land resource areas (MLRAs) (USDA-
NRCS, 2006). The greatest VI values were found within the Deep Loess Hills of northeastern 
Missouri (along major rivers and tributaries) and along the western portion of the Central Mississippi 
Valley Wooded Slope areas (Fig. 2). Additionally, the southern Mississippi River Alluvium MLRA 
exhibited the most diversity in ranges of VI values. These particular MLRA sections possess extreme 
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soil variability due to river system dynamics that drive fluctuations in soil erosion and deposition. 

Table 1: Variance Index descriptive statistics. 

 
Clay Organic Matter 

Statistics 0-30 cm 0-120 cm 0-30 cm 0-120 cm 

Median 1.67 1.50 1.59 1.80 

Mean 2.36 2.18 2.00 2.29 

Variance 10.34 9.45 2.33 2.34 

Standard Deviation 3.22 3.07 1.53 1.53 

Coefficient of Variation 1.36 1.41 0.76 0.67 
 
Organic matter at the top increment ranged from 1 – 42 with an average of 2.0 and median of 1.6 
(Table 1). The profile increment of organic matter had the narrowest range from 1 – 29 with an 
average and median VI of 2.3 and 1.8, respectively. The organic matter VI illustrated a more 
compressed range in variability compared to clay, but exhibited a much wider distribution of greater 
VI values (>3) across the state (Fig. 3). As was the case with clay VI, greater organic matter VI 
values were also concentrated within the Deep Loess Hills, Central Mississippi Valley Wooded 
Slope, and the Southern Mississippi River Alluvium MLRAs; however, high organic matter VI values 
were distributed widely throughout the landscape. These observed characteristics in the distribution 
and variability in organic matter suggested that this soil property was more heterogeneous than clay 
across the entire study area. Organic matter content may fluctuate as a function of changes in land-
use management and surrounding weather conditions. 
 

 
Fig. 2: Variance Index (VI) values for clay at two depth increments (0-30 and 0-120 cm).  
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Fig. 3: Variance Index (VI) for organic matter at two depth increments (0-30 and 0-120 cm).  

Clustering of Soil Variability Index 
The Anselin Local Moran’s I function revealed several types of clustering in clay and organic matter 
VIs across the landscape. Of the fields significantly clustered, a total of 8% of clay VIs were 
categorized in each depth increment; whereas 13% and 25% of organic matter VIs were clustered in 
the top and profile increments, respectively (Table 2). The percentages of fields with LH and HL 
clusters was similar between clay and organic matter where each shared low numbers of fields in 
both increments.  
 
Table 2: The number and percentages of fields with significant clustering per depth increment 
within each Anselin Local Moran’s I clustering category. Total represents the number of fields 
with significant clusters compared to the total number of fields (176000). 

 
Organic Matter Clay 

Clustering 30 cm 120 cm 30 cm 120 cm 

High-High 13215 
(59%) 

20543 
(47%) 

13081 
(89%) 

13163 
(91%) 

High-Low 320 
(1%) 

859 
(2%) 

29 
(0.2%) 

36 
(0.2%) 

Low-High 2436 
(11%) 

3429 
(8%) 

1604 
(11%) 

1193 
(8%) 

Low-Low 6483 
(29%) 

18830 
(43%) 

21 
(0.1%) 

16 
(0.1%) 

Total 22454 
(13%) 

43661 
(25%) 

14735 
(8%) 

14408 
(8%) 
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Fig. 4: Clustering distributions for clay variability index values at top and profile depths.  
 

 
Fig. 5: Clustering distributions for organic matter variability index values at top and profile 
depth increments.  
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Clay VI clusters held tightly along the Missouri River and within the most southeastern portion of 
Missouri (Figure 4); whereas organic matter VI clustering was more widely distributed (Fig. 5). The 
most significant difference observed in clustering between organic matter and clay VI values was in 
the LL category. Only 0.01% of fields had LL clusters of clay VI for both the top and profile depth 
increments, while organic matter had about 4 and 11% of fields with LL clustering, respectively. The 
clustered areas with significantly low organic matter VI values were mainly demarcated by the 
Central Claypan MLRA. This region is generally defined by poorly drained soils with a restrictive 
claypan layer. In addition to the soil type, the weather characteristics (mean annual temperature 
around 12°C) and moisture regimes (mean annual precipitation around 1000 mm) may be 
contributing to an increase in cycling of organic matter that, in turn, lowers variability. 
 
Soil properties can vary considerably given different types of management (e.g. crops, tillage 
regimes, intensity, fertilizer types, and rates in application) and soil forming factors (Jenny 1941). 
Consequently, the physical properties of the soil may respond by changing vertically with depth, 
laterally across fields, and even temporally due to weather conditions and human activities (Jung et 
al., 2006). Lastly, differences in the clay and organic matter VI, between the top (0-30 cm) and profile 
(0-120 cm), were determined to understand what depth increment captured the most variability. 
Fields with negative values indicated more variation throughout the 120-cm profile relative to the 
surface 30 cm; whereas positive values represented more variation in the top 30 cm than the 120-cm 
profile. The range of differences in clay VI between both depth increments was -26.5 to 35.3, with 
and average and standard deviation of 0.18 and 1.39, respectively. Organic matter VI had a smaller 
range in differences (-10 to 22.5), with an average and standard deviation of -0.29 and 1.13, 
correspondingly. Differences in clay VI values between depth increments showed that there was 
more variation in the top 30 cm where approximately 60% of fields had positive differences (Fig. 6). 
Conversely, only 39% of fields had 

 

 
Fig. 6: Distribution map of the differences in variability indices between top (0-30 cm) and 
profile (0-120 cm). Positive values indicate that the whole profile had lower VI values while 
negative values are indicative of greater variation in soil properties at the top depth 
increment.  
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positive differences between the top and profile VI for organic matter. Thus, the topsoil generally 
captured more variability in clay content and the profile captured more variability in organic matter 
content; however, the differences varied from place to place as evidenced by the fact that the 
majority of fields with positive differences were found along the northeast side of Missouri extending 
into the most southeastern section along the Mississippi River. These results indicate that both the 
top and profile VIs have utility for identifying fields with the greatest and least potential for variation.  

Conclusion 
This investigation calculated clay and organic matter VI values for individual fields for top (0-30 cm) 
and profile (0-120 cm) depth ranges across the state of Missouri, USA. We found that clay and 
organic matter VI ranged widely across the study region. The top depth for clay was found to have 
more variation than the profile, whereas organic matter varied more in the profile, rather than the top 
depth. Additionally, specific locations were identified across the state where groups of multiple fields 
had similar high or low VI values. The Missouri and Mississippi River alluvial floodplains shared 
similar groups of high clay and organic matter VI. The Central Claypan MLRA exhibited significant 
clustering of low VI values for organic matter. The results of this research highlight the ability of this 
methodology to identify clusters of variability, which may be used to target potential areas where the 
adoption of PA may have the greatest opportunity and return on investment.  

Technological advancements are leading to new opportunities to access precision tools, techniques, 
and services, such as on-the-go sensors and high-resolution soil-landscape data. Individuals that 
manage large-scale agricultural fields exhibiting varying degrees of soil-landscape variation may be 
able to use results from this research to justify the cost of equipment needed to implement PA 
activities. Precision agriculture technology has decreased in cost over the last three decades and if 
this trend continues, coupled with more knowledge of potential field variation presented in this 
research, adoption may increase in the future. Whether PA solutions can be technically and 
economically used will continue to be important components to consider when evaluating adoption of 
PA technology. As such, this research provided a broad perspective on specific areas that exhibited 
different amounts of variation in soil properties across fields. Even though implementing PA 
technologies remain heavily situational and dependent on the amount of variation present within a 
field, this research highlighted fields and groups of fields with the greatest potential variation that 
could be used to facilitate future PA adoption. 
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