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ABSTRACT

Sustainable land management and land use planning require reliable
information about the spatial distribution of the physical and chemical soil
properties affecting both landscape processes and services. Spatial prediction with
the presence of spatially dense ancillary variables has attracted research in
pedometrics. The main objective of this research is to enhance prediction of soil
properties such electrical conductivity (ECe), exchangeable sodium percentage
(ESP), available phosphorus (P), organic matter (OM), total nitrogen (TN) and pH
by making use of the ancillary variables as covariates. Methods that was used for
this purpose may be divided into two groups: (i) those that use only a single
variable in the prediction process (simple linear regression (SLR), ordinary
kriging (OK)) and (ii) another that make use of additional variables as a part of
prediction (simple kriging with a locally varying mean (SKLVM)). LISS-III data
from Indian remoter sensing satellite (IRS-P6) were used as secondary data with
SKLVM method. Mean square error (MSE) was used to evaluate the performance
of the map prediction quality. It was concluded that SKLVM method provided the
most accurate predictions based on the summary statistics of prediction errors
from cross-validation for mapping OM, pH and ECe. Maps from these kriged
estimates showed that a combination of geostatistical techniques and digital data
from LISS-III receiver could improve the prediction quality of soil management
zones, which is the first step for site-specific soil management.
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INTRODUCTION

Traditionally, farm managers consider fields as uniform pieces of land, and
thus, fertilizers and other farm inputs are applied without taking into account
spatial variations in field characteristics. This results in over-application and
under-application in specific areas within a field. Efficient tools to measure
within-field spatial variation in soil are important when establishing agricultural
field trials and in precision farming. Spatial prediction of soil properties has
become a common topic in soil science research. Variability in soil properties can



present management challenges to producers (Goovaerts, 2000). This is enhanced
by the advancement of technology that enabled collection of on-thego proximal
sensors and also remotely-sensed imagery for use in precision agriculture and
digital soil mapping (Lopez-Granados et al., 2005). Site-specific management or
precision agriculture seeks to identify, analyze, and manage spatial and temporal
variability within fields in order to optimize profitability, sustainability, and
environmental protection (Robert et al., 1996; Duffera et al., 2007). Chaplot et al
(2000) demonstrated that quality of soil hydromorphy prediction was highly
improved by co-kriging of 10 and especially 60 pedological data points with a
topographical regression model. Simbahan et al. (2006) reported that for reducing
uncertainties, it was recommended that use independently measured, multivariate
secondary information in regression kriging approaches for mapping of soil
organic carbon. They indicated that geostatistical methods that utilized spatially
correlated secondary information increased the quality of maps of soil organic
carbon stock as compared to OK. Also, showed that regression kriging with ECe
performed better than OK, kriging with an external drift or cokriging. Minasny
and McBratney (2007) concluded that improvement in the prediction of soil
properties does not rely on more sophisticated statistical methods, but rather on
gathering more useful and higher quality data. Due to high cost and time-
consuming nature of soil sampling and their analysis, research in developing
methods for the creation of soil maps from sparse soil data is becoming
increasingly important. In the past 20 years, the development of prediction
methods that use cheap secondary information to spatially extend sparse and
expensive soil measurements has been a sharpening focus of research (Odeh and
McBeatney, 2000; Minasny and McBratney, 2007; McBratney et al., 2003;
Lopez-Granados et al., 2005). Examples of secondary information include remote
sensing imagery, elevation data and crop yield data. Furthermore, a number of
proximal soil sensors are becoming more available; examples are the Soil Doctor
Colburn, 1999 and the VERIS conductivity cart (Lund et al, 1999).
Consequently, the potential for using the secondary information to aid soil
mapping at the within-field extent is greater than ever before.

The introduction of ancillary, exhaustive spatial information linked to salinity
might improve the mapping of this attribute. Many authors have shown that
remote sensing, particularly within the visible spectral range, yields spatial
information strongly correlated with salinity (Mougenot, 1993; Rahman et al,,
1994; Khan et al., 2001; Metternicht and Zinck, 2003) or soil surface features
with additional microwave remotely sensed data (Metternicht and Zinck, 1998;
Sumfleth and Duttmann, 2007). Moreover, several authors have demonstrated the
advantage of combining data from remote sensing with pinpoint information
observed on the ground (Bishop and McBratney, 2001; Carré and Girard, 2002).

Several studies have explored the potential benefits of using secondary
information to map different variables. For example, Goovaerts (2000) compared
Thiessen polygons, inverse distance weighting (IDW), SKLVM, kriging with an
external drift and collocated cokriging for mapping precipitation. With the latter
three approaches elevation was used as the secondary variable and these
techniques resulted in smaller prediction errors than the univariate ones.

Remotely sensed data can be useful for improving existing coarse-scale soil
survey information at a regional scale. Thus, Odeh and McBratney (2000), Bishop



and McBratney (2001), and Kerry and Oliver (2003) demonstrated that AVHRR
(Advanced Very High Resolution Radiometer) data from the NOAA (National
Oceanic and Atmospheric Administration) series of satellites, bare soil
LANDSAT TM (Thematic Mapper) imagery and bare soil aerial colour
photograph have been useful for the field-extent creation of different soil property
maps using different prediction models (statistical and geostatistical techniques).
They used the soil spectral variation for spatial prediction of soil attributes at a
regional scale. The major objectives of our study was to compare different
prediction methods such as simple linear regression (SLR), ordinary kriging (OK)
and method that make use of secondary or ancillary variables (LISS-III receiver
data from IRS-P6) as a part of prediction such as simple kriging with a locally
varying mean (SKLVM) in order to determine the most appropriate approach to
spatially transfer data from a limited number of sampling points to unsampled
locations.

MATERIALS AND METHODS
STUDY SITE

The study area is found in Badjgah plain that located in Fars province,
southern Iran at geographical coordinates of 29°42" to 29°46' N latitude and 5310
to 53°17' E longitude. Soils were developed over the parent material of limestone.
The mean annual precipitation, evaporation and temperature are 333.4 mm, 919.1
mm and 15.2 °C, respectively. Soil moisture and temperature regime are xeric and
thermic, respectively. The prominent soils of Badjgah plain are somewhat
affected with salinity and/or sodicity because of high evaporation. Extensive areas
of the Badjgah plain have become and continue to be degraded by salinization due
to the use of low-quality irrigation water with inappropriate irrigation methods.
As a result, agricultural production of the Badjgah plain has declined significantly
in the last two decades.

SOIL SAMPLING, LABORATORY ANALYSIS AND REMOTE SENSED
DADA

Eighty-five soil samples, on 08 September 2006, from the top soil (depth of 0-
30 cm) were collected and geo-referenced using GPS receiver (accuracy of + 5
m), analyzed for ECe, P, OM, pH, TN and ESP. ESP was determined using the
ammonium acetate (NH4OAc) method (Thomas, 1982); soil pH was measured
with a glass electrode pH meter (McLean, 1982). Soluble salts were calculated by
measurement of ECe in the soil extraction by the use of a conductivity meter
(Rhoades, 1982). OM was determined dichromate oxidation procedure (Allison,
1965). Total nitrogen (TN) was determined with the Kjeldahl method (McGill and
Figueiredo, 1993), available phosphorus (P) was measured by the Olsen method
(Olsen et al., 1954).

Remote sensed data is now considered as an appropriate tool for deriving
information in spatial and temporal domains by providing multi-spectral
reflectance data at regular intervals in a synoptic mode. The satellite data used in



this research is IRS-P6 scene, dated 08 September 2006. Both geometric the
correction and conversion of original digital number measures to the surface
reflectance values was carried out in conjunction with the atmospheric correction.
The imaging sensors on IRS-P6 that was used is a multispectral Linear Imaging
Self-Scanner (LISS-III) in visible (0.52-0.59 pum, band 1; 0.62-0.68 pum, band 2),
near-IR spectral bands (0.77-0.86 um, band 3) with spatial resolution of around 23
meters and a Short Wave IR (SWIR) band (1.55-1.75 um, band 4) with a
resolution of around 70 meters.

PREDICTION METHODS
A brief description of the prediction methods used is given below.
SIMPLE LINEAR REGRESSION (SLR)

Every sampled soil point was located in the satellite image and its
corresponding digital value in four bands (band 1, 2, 3 and 4) was extracted. It
was verified that all variables (i.e., soil properties and spectral values in visual
range) were normally distributed. Pearson linear correlations were determined
between soil variables and spectral values in four bands, accepting a confidence
level of 95%. Regression equations were calculated for those soil variables that
showed higher significant correlations with digital data. It should be imply that
band combinations and principal component analysis obtained from four bands
had not any more accuracy that these four main bands; therefore, we have
presented results of the four main bands in Table 1.

ORDINARY KRIGING (OK)

OK with a global variogram was used as a basis of comparison with other
methods, as predictions may only be derived from ground measurements:

ZOK*(SO) = glwi(si)x Z(Si)

where m is the number of neighbours considered and wi (si) are the weights
derived from variogram fitting (Goovaerts, 1997).

SIMPLE KRIGING WITH LOCALLY VARYING MEAN (SKLVM)

Simple kriging (SK) is the most basic form of kriging. With SK, the mean is
assumed to be constant and known. If we can estimate the mean at locations in the
domain of interest then this locally varying mean can be used to inform
prediction. SKLVM prediction is defined as:

Z SKLVM (ug) —mgg (Ug) = D 2k (MO){Z(Ua )—msg (Ug )}

a=1



where m simple kriging is a known locally varying mean. The locally varying
mean can be estimated in various different ways. One approach is to use
regression (presented in SLR approach) to predict at all observation locations and
all locations where SKLVM predictions will be made. Then, the semivariogram
of the residuals was computed, modelled, cross-validated and simple kriging on
the residuals was carried out. The final estimate of every soil property was
obtained by adding the trend estimate to the simple kriged estimate of the
residuals (Goovaerts, 1997; Vanderlinden, 2001). This method was applied to the
soil variables showing significant correlations with digital values in four bands at
P<0.01, i.e., OM, pH and ECe with band 1 (Table 1).

COMPARISON BETWEEN THE DIFFERENT METHODS

For the purpose of comparison, several comparison indices can be used as a
measurement of the prediction quality, however, the most common of which is the
mean square error (MSE) which measures the average square difference between
the actual soil variable z(x7) and its estimate z*(xi):

MSE = %Z lz(x) - 2" (x)]

where n = soil variable data set (Goovaerts, 2000). The comparative
performance of the prediction models was measured by using MSE of OK as the
standard, which did not take into account the digital numbers (Bishop and
McBratney, 2001). The MSE of OK was calculated as reported in Lopez-
Granados et al. (2005).

RESULTS AND DISCUSSION
SIMPLE LINEAR REGRESSION (SLR)

Pearson linear correlations between soil parameters and spectral values (Table
1) revealed that OM, pH and ECe showed highest correlations by using the
spectral data in the band 1, although these correlations were relatively moderate
(0.5-0.6). Negative correlations meant that small digital numbers for the band 1
corresponded to high values of pH. P, TN and ESP were the soil properties having
the lowest correlation coefficients (being non significant). Regression equations
for the highest correlation coefficients between soil properties and spectral data
are presented in Table 2. In all cases, the band 1 from LISS-III receiver data was
used for fitting the regression equations because its correlation coefficients were



Table 1. Pearson linear correlations between soil parameters and spectral
values for blue, green and red wavebands

Bands pH ECe P ESP OM TN

Band - 0.57%* 0.21 0.4 0.69%* 0.38
1 0.61%* ns ns ns

Band - 0.23%* 0.31 0.22 0.31* 0.11
2 0.29%* ns ns ns

Band - 0.27 0.15 0.15 0.42 0.14
3 0.22ns ns ns ns ns ns

Band 0.23 0.22 0.2 0.1 0.25 0.09
4 ns ns ns ns ns ns

* Significant at 0.05 level.
** Significant at 0.01 level.

Table 2. Regression equations between soil parameters and spectral values for
the blue waveband

Regression equations Det.erminaztion
coefficient (R7)

Organic matter (%) = 0.567 + 0.0044 * band 1 0.476

pH = 8.623—0.0025 * band 1 0.372

ECe=4.4213+0.00764 * band 1 0.325

higher and significant. Maps of OM, pH and ECe could be easily illustrated in
remote sensing software such as ILWIS using presented equations in Table 2.

ORDINARY KRIGING (OK)

Table 3 indicates mean, coefficients of variations (CV), standard deviation
and skewness of the soil parameters. Skewness is the most common form of
departure from normality. If a variable has positive skewness, the confidence
limits on the variogram are wider than they would otherwise be and consequently,
the variances are less reliable. A logarithmic transformation is considered where
the coefficient of skewness is greater than 1 and a square-root transformation
applied if it is between 0.5 and 1 (Webster and Oliver, 2001). Therefore, a
logarithmic transformation performed for ECe, pH and ESP parameters because,
their skewness was greater than 1. The CV of soil properties except pH and TN
were fairly high, indicating that soil properties were generally heterogeneous
(Table 3). The highest CV value was for ESP, while the CV value for pH was the
lowest. Anisotropic semivariograms did not show any differences in spatial
dependence based on direction and therefore isotropic semivariograms were
chosen. The geostatistical analysis indicated two spatial distribution models and
spatial dependence levels for the soil parameters. Exponential and spherical
models were used to define soil properties (Table 4). Nugget effect was higher for



ESP, TN and P compared to pH, OM and ECe. This indicated that these soil
properties had

When the distribution of soil properties is strongly or moderately spatially
correlated, the mean extent of these patches is given by the range of the
semivariogram. A larger range indicates that observed values of the soil variable
are influenced by other values of this variable over greater distances than soil
variables which have smaller ranges (Lopez-Granados et al., 2005). Range value
varied from 1811 m (for pH) to 4924 m (for OM).

Generally, range values of ECe and pH were smaller than that of the other soil
properties. The low nugget variance/total variance ratio and small range values for
some soil properties exhibited patchy distribution pattern. The patchy distribution
can be related to the near level of groundwater to soil surface and predominated

topography in Badjgah plain (Cemek et al., 2007).

Table 3. Descriptive statistics for studied soil properties

Parameters Mean S.Da CVb Min Max Skewness
pH 7.83 0.27 34 7.5 8.4 1.46

ECe (dSm-1) 6.52 4.25 65.2 2.8 21.2 2.11

ESP (%) 10.8 11.19 103.6 3.21 70.17  3.81

OM (%) 1.84 0.73 39.7 0.11 3.21 -0.17

P (mg kg-1) 18.2 8.2 45.1 7.2 30.1 0.4

TN (%) 0.032  0.02 62.5 0.016 0.069 0.12

aStandard deviation; bCoefficient of variations

Table 4
Semivariogram models and models parameters for studied soil properties

(+)Spatial Nugge Sill Rang Nugget
Parameters distribution t (CO+C e /Sill r2 RSS*

and model (C0) ) (m) (%)

: 0.0002

pH S. Spherical 0.11 1.2148 1811 9 0.81 1
]f)ce (dSm-\r Spherical ~ 0.51 11806 2121 432 081 0
ESP (%) M. Spherical 7.80 12.704 2942 61.4 0.61 0.0008
OM (%) S. Exponential ~ 0.475  2.247 4924 21.13 0.95 0.0001
Il)) (mg ke W Exponential 10.24  14.581 3054 70.23 0.75 2'0013
TN (%) M. Spherical 6.421 10.25 2648 62.63 0.68 0.0001

(+) Spatial distribution (S-strong spatial dependence (<25%); M-Moderate spatial
dependence (26-75%); W-weak spatial dependence (>75%); Pure Nugget- no spatial
correlation (100%) and their spatial distribution model.
*Residual sum of squares (often the model with the lowest RSS chooses as optimal).



SIMPLE KRIGING WITH LOCALLY VARYING MEAN (SKLVM)

This method was applied to the soil variables showing significant correlations
with digital values in four main bands at P < 0.01, i.e., OM, pH and ECe with
band 1 (Table 1). This kriging method is an interpolation that incorporates
secondary information into the kriging system. It uses the ancillary (or secondary)
information to characterize the spatial trend of the primary (target) variable and
performs simple kriging on the residuals (Goovaerts, 1997). Table 5 shows the
semivariogram of residuals for OM, pH and ECe with the fitted model. Fig. 1
shows the maps of OM, pH and ECe estimates obtained by SKLVM. The Nugget
effect, sill, semivariogram model and range of the residuals semivariograms were
approximately similar of raw semivariogram.

Sill semivariance of OM was 2.247 and 2.127, for ECe it was 1.1806 and
1.1906, for pH it was 1.2148 and 1.2811 for the raw soil parameter
semivariogram and the residual semivariogram, respectively, indicating the lag
distance between measurements at which one value for a variable does not
influence neighboring values (Tables 4 and 5). Goovaerts (1999) found a similar
trend when he incorporated a digital elevation model into the mapping of annual
erosivity values using the same kind of kriging. The residual semivariogram
model of pH was pure nugget, which was similar to that of the raw semivariogram
and means that pH and ECe were considered strong-spatially correlated.

There is some similarity in the map pattern of OM, pH and ECe as produced
by OK and SKLVM methods (Fig. 1). However, OK over-smoothed the spatial
variability of OM, pH and ECe. Comparatively, it seems that SKLVM reflects
local variation more than OK, but it is necessary to compare the MSE to evaluate
this.

Table 5. Semivariogram models of the residuals

Soil Semivariogra Range 2 .
parameters ~ m model Nugget (m) ! Sill
Organic .
matter (%) Exponential 0.485 4901 0.97 2.127
pH Spherical 0.10 1881 0.89 1.2811
ECe Spherical 0.41 2131 0.96 1.1906

COMPARISON BETWEEN DIFFERENT PREDICTION METHODS

MSE for different methods for pH, ECe and OM (Table 6) shows that the
generic geostatistical technique, such as OK, exhibited the highest MSE because
it does not take into account the secondary information and only uses the primary
soil variable. spatial variability in small distances.The large nugget semivariance
suggest that an additional sampling of these variables at smaller lag distances and
in larger numbers is needed to detect spatial dependence.
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Fig. 1. Soil maps obtained using OK method: (a) pH, (c) ECe (dSm™), and
(e) OM (%); and soil maps obtained using SKLVM: (b) pH, (d) ECe (dSm™),
and (f) OM (%)

Comparing the other prediction methods, higher predictions errors were obtained
when only SLM was considered for ESP, P and TN. SKLVM was clearly the best



method for the prediction of OM, pH and K showing the lowest MSE values.
Also, the best prediction method for mapping ESP, P and TN was obtained from
SLM.

Bourennanen et al. (2000) compared linear regression with kriging with an
external drift (This method also uses secondary variable) for mapping soil horizon
thickness, using slope gradient as the secondary variable. They found that kriging
with an external drift provided more accurate predictions than linear regression.
Pardo-Igu’zquiza and Dowd (2002) compared OK, SKLVM, kriging with an
external drift, cokriging and Bayesian integration for prediction using wireline-
logs of acoustic-impedance recorded at nine boreholes, with acoustic-impedance
values from a 3D seismic survey as secondary data. On the basis of the mean
absolute relative error (MARE) cokriging provided the most accurate predictions,
followed by SKLVM. However, on the basis of the mean squared error (MSE)
and other statistics the authors considered SKLVM the preferred method in their
application.

In general, estimation method using spectral data had more favorable MSE
results than prediction methods using only soil variables, indicating that the
correlation of soil variables with spectral data is more important for mapping soil
variables than the spatial correlation of available soil measurements. Thus, the
least accurate estimation for OM, pH and ECe, with highest MSE values, was OK
because the spectral data were ignored and only the spatial component of soil
variables was considered.

On the other hand, SLR method resulted in the poorest prediction because low
correlations between soil attributes and spectral values were obtained, probably
due to the spatial component being ignored.

Despite this, when secondary information is available it should be
incorporated into map soil attributes because the MSE for simple linear regression
is lower than the MSE for OK. Bishop and McBratney (2001) found that when
kriging of the residuals was incorporated to different prediction models studied,
the RMSE (root mean square error) was lower. They indicated that kriging with
an external drift, an interpolation method very similar SKLVM which also
performs kriging on the residuals, was the best prediction method for mapping
soil properties using bare soil aerial photograph.

They also concluded that when secondary information is available, it should
be used because generic geostatistical techniques that only use the primary
variable, such as OK, do not obtain the prediction performance of the methods
that incorporate that secondary information.

Table 6. Mean square errors for the compared prediction methods when estimating soil
properties

Prediction method pH ECe OM ESP P TN
Simple linear regression 1.731 2.951 1.822  4.254 8.580 9.51
Ordinary kriging 1.813 3.232 2254 2245 3254 4.14

SKLVM 0.766 1.337 0913 - - -




CONCLUSIONS

The results here indicate that when secondary information especially remote
sensed data is available, it should be used to model the deterministic trend in the
variation of a soil surface attribute. Also, this study has demonstrated that sparse
and expensive soil measurements combined with secondary information, such as
remotely sensed (spectral) data from IRS-P6, and geostatistical techniques were
adequate to map soil properties accurately. The relationship between spectral
(digital) data in the band 1 from LISS-III receiver data and OM, pH and ECe
developed in this research might be applied to other fields in southern Iran,
especially in all Badjgah plain soil that have the same qualities. For variables
presenting a high or moderate correlation with spectral data, as secondary
information, kriging with varying local means results accurate estimates because
it uses spectral data to derive the local mean or trend of any soil property.
Therefore, precision farming could be benefited by such enhanced technique
where the data of remote sensing or other cheap valuable secondary variable of
soil parameter are available.
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