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ABSTRACT 
 

     In recent years, citrus-devastating diseases such as citrus canker and 
huanglongbing (HLB) have spread to various parts of Florida and are threatening 
the Florida citrus industry. The detection of HLB infected trees in the early stages 
is imperative to eliminate trees as sources of inoculum and to prevent further 
spread of the disease. Currently, grove scouting by a trained scouting crew is the 
most widely used technique for disease detection. There is a need for the 
development of new field-based, real-time, accurate sensing technologies for 
rapid plant disease detection. The present work evaluates the spectroradiometer as 
a prospective sensor for HLB detection in citrus. The reflectance from the HLB-
infected and healthy leaves were collected in the range 350-2,500 nm. After 
preprocessing, the spectral data were classified using two classification 
algorithms: quadratic discriminant analysis (QDA) and k-nearest neighbor (kNN). 
Results indicated that the classification accuracies for classifying healthy and 
diseased classes were > 80%. The classification accuracies for predicting healthy 
class were found to be higher than diseased class prediction in most cases. In 
general, the classification accuracies of QDA were found to be higher than kNN 
with accuracies greater than or equal to 90%. Thus, the optical sensors provide a 
potential for disease detection in citrus orchards.  
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INTRODUCTION 
 

Huanglongbing (HLB) or citrus greening is a major citrus disease that has 
greatly affected the citrus production in Florida. Since HLB was discovered in 



 

southern Florida in 2005 (Chung and Brlansky, 2009), it continues to spread to 
other citrus production areas in Florida. The symptoms of HLB are distinctively 
visible in the leaves. The leaves develop blotchy mottle with asymmetric 
yellowing or chlorosis. These symptoms are often confused with nutrient 
deficiencies. The citrus growers, related industries, and researchers are working 
together to prevent the spread of HLB.  

The HLB can be detected only through appearance of symptoms in the citrus 
leaves. After the infection of a citrus tree with causative bacterium, Candidatus 
Liberibacter asiaticus, it takes about six months to a year or two (based on the age 
of the tree) for the symptoms to appear. By the time, the symptoms appear and 
disease is identified in the trees; the infected tree has already acted as a source of 
inoculum for further spread of the disease. Therefore, there is a need for the 
development of new field-based sensing technologies for rapid plant disease 
detection. The optical sensing technique offers a real-time, non-destructive, 
accurate, and rapid field-based detection of citrus diseases. 

The visible and infrared is a fast-developing technology being used for the 
detection of stress, injury, and diseases in plants (Polischuk et al., 1997, Spinelli 
et al., 2006, Naidu et al., 2009). The visible and infrared regions of the 
electromagnetic spectra are known to provide the maximum information on the 
physiological stress levels in the plants (Muhammed, 2002; Muhammed, 2005; 
Xu et al., 2007) and thus, some of these wavebands specific to a disease can be 
used to detect plant diseases (West et al., 2003), even before the symptoms are 
visible. In general, visible spectroscopy in combination with infrared 
spectroscopy is used for disease detection in plants (Malthus and Madeira, 1993; 
Bravo et al., 2003; Huang et al., 2004; Larsolle and Muhammed, 2007).  

An integrated USDA-funded project involving Carnegie Mellon University, 
University of Florida, Cornell University and John Deere is ongoing, to develop 
an autonomous tractors for sustainable specialty crop farming. The research teams 
have come together to develop an automated system for detecting plant stress, 
estimating yields, and reducing chemical usage through precision spraying for 
specialty crops. The goals of the automation process are to reduce the tractor-
related labor costs, reduce the scouting labor costs, to improve equipment 
utilization, and reduce chemical usage. As a part of these efforts, a sensor 
platform was developed to monitor the diseases in citrus trees through multiple-
sensing techniques. These systems can be used for a broad range of specialty 
crops. The present work involves the evaluation of an optical sensor system for 
field- and laboratory-based detection of citrus greening.  
 

METHODOLOGY 
 

Sensor system 
 

A high resolution field-portable spectroradiometer, SVC HR-1024 (Spectra 
Vista Cooperation, NY) was used for spectral data collection. The spectral range 
of the spectroradiometer was 350 nm to 2,500 nm. A 4º field of view optic was 
used in order to identify the spectral wavelengths specific for HLB detection in 
citrus. During the field-based data collection, the sensor was placed in a stand in a 
moving sensor platform. Additional light source, 500-watt portable halogen lamp 



 

was used during data collection. Our preliminary studies indicated that additional 
light source was required (even during day time) to prevent noise in the spectral 
data, especially in the near infrared region. Two lamps were angled at 45º to 
provide uniform light source. The white and dark background correction was 
performed as required. 

 
Data collection 

 
The spectral reflectance data from symptomatic citrus leaves and healthy 

leaves from Southern Garden citrus grove were collected using the 
spectroradiometer interfaced with computer. The HLB-infected samples were pre-
marked with the help of Southern Garden’s head scout. After the field spectral 
data collection, all the samples were analyzed in laboratory, followed by sending 
the leaf samples for polymerase chain reaction (PCR) analysis. The number of 
healthy and HLB-infected orange trees analyzed was 100 and 101, respectively. 
Five spectra were collected from each sample and averaged for analysis. During 
the data collection, the distance between the spectroradiometer and the leaf 
sample was maintained at about 0.5-0.6 m. 

 
Data analysis 

 
Data preprocessing 
 

The spectral reflectance data were preprocessed for specific wavelength 
identification and classification purposes. Each sample spectral reflectance values 
were normalized using equation 1.  
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where, Rnorm(i) = normalized reflectance for a particular wavelength in a sample, Ri 
is measured reflectance of a particular wavelength in a sample, and i varies from 1 
to n (989), referring to each wavelength within a sample. After normalization, the 
data were averaged every 25 nm. The 989 spectral data features were reduced to 
86 data features for each sample.  
 
Classification of visible-infrared reflectance spectra 
 

The data were analyzed in two ways. In first, the entire averaged spectral data 
were analyzed; while in second, specific wavelengths that possess the 
discriminatory power were used for classification. During the first method of 
analysis, the Savitzky-Golay filter was applied to determine the first and the 
second derivatives. A window size of 7 and a polynomial order of two were used 
for filtering. Following this, preprocessed data were merged with first and second 
derivatives, followed by principal component analysis (PCA). The principal 
components (PCs) were selected such that the variance of the data > 99.9%. The 
principal components were used as the input features for classification. Two 
classifiers, quadratic discriminant analysis (QDA) and k-nearest neighbor (kNN) 
were used for classification. The k for kNN algorithm was varied from 1 to 15, 



 

and optimized based on the maximum classification accuracy. The healthy 
samples were referred as class 1, while diseased (HLB) samples were referred as 
class 2.  

In the second method of analysis, the critical wavelengths contributing to the 
variations between the classes (healthy and HLB) were identified. These 
wavelengths were selected using stepwise discriminant analysis. The field and the 
laboratory data were classified based on these wavelengths as classifier input 
features. In addition, common wavelengths were derived from laboratory and 
field data and analyzed in a similar manner. Two classifiers, QDA and kNN were 
used for classification. All the data analysis was performed using MATLAB®7.6 
with an exception of stepwise discriminant analysis, which was performed using 
SAS®9.2.  
  

RESULTS AND DISCUSSION 
  

Classification of visible-infrared reflectance spectra 
 

The spectral reflectance data (Fig. 1.) were acquired from the SVC 
spectroradiometer in visible-near infrared region (350-2,500 nm) of the 
electromagnetic spectrum. The resolution of the reflectance data depended on the 
wavelength of the spectra. The resolution of the spectral reflectance was between 
0.9-1.5 nm for wavelengths from 350 to 980 nm; while, resolution was between 
2.1-3.9 nm for wavelengths from 980 to 2,500 nm. After averaging the spectral 
reflectance every 25 nm, the spectral reflectance features were reduced from 989 
to 86 spectral features.  

 
Figure 1. Spectral reflectance of the representative field data from 350-2,500 
nm.   
 
 

The Savitzky-Golay filter was applied to determine first and second 
derivatives of the spectra. As a window size of 7 was used during filtering, a total 
80 spectral features from first and second derivations (each) were acquired. A 
total of 246 spectral features were obtained for each sample. The number of 
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features was reduced through PCA. Twenty four and sixteen PCs (99.9%) were 
used for the further analysis of field and laboratory data, respectively. It could be 
observed that fewer PCs were required in analyzing laboratory data in comparison 
with field data, due to low variability. In the field condition, there were many 
challenges during data collection that lead to some variations. Some of them are 
presence of wind, non-uniform canopy from tree to tree, changing light 
conditions, and presence of symptomatic leaves in-between the canopy of the tree. 
Fig.2. shows the PC plot for the field and laboratory data.  

 
Figure 2. Principal component analysis of the spectral reflectance data 
features.   
 
 

The PCs were used as input features for the classification algorithm. The data 
were randomized and separated into train and test class in the ratio 4:1. For the 
same set of data, the classification accuracy of QDA and kNN were determined. 
The procedure was performed three times such that the data was randomized three 
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times before dividing the data into train and test data, and classification. The 
results of QDA- and kNN-based classification are summarized in Table 1 for the 
field and laboratory dataset.    
 
Table 1. Classification accuracies (%) of healthy and diseased class using entire 
spectral data. 

 
Accuracy (%) QDA kNN 

Run I II III Average k I II III Average 
Field Data 
Total  98 93 90 93 

7 
83 85 90 86 

Class1  94 100 85 93 94 100 90 95 
Class2  100 88 95 94 73 75 90 79 
Laboratory Data 
Total  90 92 85 89 

8 
90 85 92 89 

Class1  96 100 89 95 91 94 89 91 
Class2  81 86 81 83 88 77 95 87 

 
 

The classification accuracies of both the classifiers for classifying healthy and 
diseased sample data were found to be > 80%. In field data analysis, the QDA 
overall average classification accuracies (93%) were distinctly higher than the 
kNN overall average classification accuracies (86%). In laboratory-based data 
analysis, though the classification accuracies of QDA were slightly higher than 
that of kNN, the accuracies were comparable. Comparing the false positive, the 
false negatives were found be higher with a lower classification accuracies in 
most cases, except QDA-based classification of field data. Thus, QDA is a better 
classifier than kNN for spectral data classification.  
 

Wavelength selection 
 

The spectroradiometer captures reflectance from the tree canopy for a broad 
wavelength range. For these reasons, the spectroradiometer instruments are 
expensive. The cost of sensors can further be decreased by reducing the number 
of wavelength bands used for data collection. This will also help in the fabrication 
of a more rugged and potable sensor. In addition, selection of wavebands specific 
to a particular disease will increase the accuracy of the sensor systems. For these 
reasons, the wavelengths possessing the ability to classify the healthy and 
diseased samples were identified. Stepwise discriminant analysis selects the 
quantitative variables that contribute to the discrimination among the classes. The 
stepwise discriminant analysis was performed in field and laboratory data. In 
addition, a set of wavelength variables were identified that were found to be 
occurring in wavelengths selected by stepwise discriminant analysis from both the 
datasets (field and laboratory). Table 2 summarizes the wavelengths showing 
discriminatory power selected from field and laboratory data analysis. 

 
 



 

Table 2. Wavelengths selected by stepwise discriminant analysis. 
Data No. of wavelt. Significant Wavelengths (nm) 
Laboratory 
data 

12 612, 638, 662, 713, 813, 1445, 1622, 1923, 1997, 
2047, 2098, 2471 

Field data 
24 537, 612, 688, 713, 763, 813, 963, 998, 1023, 1120, 

1148, 1272, 1296, 1498, 1524, 1597, 1647, 1822, 
1873, 1898, 2073, 2121, 2172, 2273 

General 12 537, 612, 688, 713, 813, 913, 1120, 1346, 1445, 
1597, 1622, 1898 

 
 
Based on the selection of wavelengths that contributes to classification of the 

classes from the field and laboratory data, a set of common wavelengths were 
derived. Except some wavelengths in green and red region of the visible spectra, 
most of the wavelengths were found to be in mid-infrared region. 

 
Classification of spectral reflectance data based on selected wavelengths 

 
The specific wavelengths derived from stepwise discriminant analysis of the 

indoor reflectance data, and commonly derived wavelengths were utilized for 
further analysis. The reflectance values from these selective wavelengths were 
used as input features in the classification model. Table 3 and 4 summarizes the 
classification results when the specific wavelength reflectances from the 
laboratory data were used and commonly derived wavelength reflectance values 
were used as model input features, respectively. Though, there were variations in 
the optimum ‘k’ values, the classification accuracies were high. The kNN-based 
algorithm yielded low classification accuracies (especially field data) in 
comparison to QDA-based model. Moreover, the kNN-based classification 
accuracy to predict diseased class was lower then healthy class, resulting in higher 
false negative values. The QDA classification accuracies were 10% higher than 
kNN-based classification. The average overall classification accuracy of QDA 
was > 90%. The overall classification accuracies of laboratory data were higher 
than field data.  

 
Table 3. Classification accuracies (%) after stepwise discriminant analysis of 
laboratory data. 

Accuracy (%) QDA kNN 
Run I II III Average k I II III Average 

Field Data 
Total  90 93 88 90  

8 
 

88 83 85 85 
Class1  89 95 86 90 89 95 90 92 
Class2  90 89 89 90 86 68 79 78 
Laboratory Data 
Total  95 87 100 94  

8 
 

95 77 92 88 
Class1  90 88 100 93 100 76 95 91 
Class2  100 86 100 95 89 77 88 85 

 



 

Table 4. Classification accuracies (%) based on selective wavelengths derived 
from field and laboratory data. 

Accuracy (%) QDA kNN 
Run I II III Average k I II III Average 

Field Data 
Total  93 90 88 90  

9 
 

80 83 78 80 
Class1  94 90 89 91 94 95 79 89 
Class2  91 90 86 89 68 70 76 71 
Laboratory Data 
Total  92 92 87 91  

9 
 

87 79 82 83 
Class1  94 91 88 91 88 78 88 85 
Class2  91 94 87 91 86 81 78 82 

 
 

CONCLUSION 
 

In the present work, a spectroradiometer was used as an optical sensor to detect 
citrus greening in leaves. The spectral reflectance in the range 350-2,500 nm was 
collected from the HLB-infected and healthy leaves under field and laboratory 
conditions. The reflectance data was preprocessed by averaging every 25 nm in 
order to reduce the number of features during analysis. Two classifiers, quadratic 
discriminant analysis and k-nearest neighbor were used for classification. The 
classification accuracies for classifying healthy and diseased class were found to 
about 80% or higher during kNN-based analysis. The QDA-based algorithm 
yielded high classification accuracies of 90% or higher, with a very low false 
negatives, as desired for real-world applications. In general, the classification 
accuracies for predicting healthy class were found to be higher than disease class 
prediction. Efforts were also made to identify the wavelengths that provide the 
discriminatory power within the spectra among the classes. It was found that most 
of the wavelengths contributing to the discrimination were present in the near-
infrared region. This study demonstrates the potential of optical sensors for 
disease detection. 
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