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Abstract. Irrigation Intelligence is a practice of precise irrigation, with the goal of 
providing crops with the right amount of water, at the right time, for optimized yield. One of the 
ways to achieve that, on a global scale, is to utilize Landsat-8 and Sentinel-2 images, providing 
together frequent revisit cycles of less than a week, and an adequate resolution for detection of 1 
ha plots. Yet, in order to benefit from these advantages, it is necessary to examine the 
information that can be extracted from both sensors to detect crop water potential. Our 
hypothesis is that these indices can be used successfully to depict significant changes in water 
quantity in commercial plots during the growth stage of the season, which may assist in 
monitoring crop water stress. Two data sets were used: published multi-spectral of full-stressed 
and non-stressed leaves, and satellite imagery with their corresponding leaf or stem water 
potential (LWP or SWP, respectively) of crop fields and orchards. Whenever possible, the leaf 
area index (LAI) as well as vegetation fractions were taken. Image processing includes the 
calibration to surface reflectance and calculation of known and new spectral vegetation indices 
(VIs). The ability of the tested VIs to capture water potential variability was developed in three 
steps: Firstly, the published dataset was used to present the sensitivity of each index to depict the 
differences between stress and non-stress at the leaf and canopy levels. These results not only 
show the magnitude of the relationships but also their direction (positive or negative). Secondly, 
we used our satellite imagery and field measurements datasets to report the statistical 
relationships among these spectral indices and the physical LWP or SWP over the growing 
season. The best index, which consistently depicts the differences, was employed in the third step, 
to map crop water potential in commercial plots. We tested these maps by measuring LWP or 
SWP in the extreme points (driest and wettest) and found significant differences among the 
points, although their canopy fraction or LAI were similar. 
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Introduction 
Droughts, global warming and the increasing development of precision agriculture requires 
smart irrigation and to increase the ratio of yield to water. Huge research work was conducted to 
understand how to increase this ratio, the water use efficiency (WUE), and when is the best 
period during the growing season to apply water stress for higher yield quality and quantity. This 
method is generally called precision irrigation or irrigation intelligence and the common 
controllers are measurements of leaf water potential (LWP) or stem water potential (SWP). 
Examples for utilize these measurements to determine HOW MANY and WHEN can be found 
for cotton (Crimes et al., 1987), alfalfa (Sharratt et al., 1983), Citrus (Lurbe 2013) grapevines 
(Netzer et al., 2009), almonds (Goldhamer et al., 2006; Prunus and Eichi 2013), apples (Naor et 
al. 1995) and so on (McCutchan and Shackel 1992; Shackel et al. 1997). Furthermore, these 
measurements are highly correlated to the evapotranspiration (ET) and the vapor-pressure-
deficit (VPD, Kopyt and Tsadok, 2015), which are important to determine the quantity (HOW 
MANY) and the timing (WHEN) of the irrigation. 
To answer the WHERE question, remote sensing is utilized to map the plant water requirements 
via an application of Vis-NIR and thermal regions (Moran et al. 1994). This method, also known 
as the crop water stress index (CWSI, Jackson et al., 1981), can be used for a specific field or 
farm with a plant sensor (Kullberg et al., 2017), unmanned aerial systems or airplanes (Cohen 
et al. 2017). However, only Landsat can be used for a global coverage scale, with a repetition of 
16 days and 100-m pixels. These Landsat characters do not allow decision making on a weekly 
basis or for small plots, and require new methods that can be used for multi-spectral imagery. 
Further, to broaden the use of more than one satellite, and thus to eliminate the dependency in 
one system, the spectral indices should be validated with other sensors. Until now, several 
publications already presented the sensitivity of spectral indices to water stress as the 
normalized difference water index (NDWI, Hardisky et al., 1983), the normalized multi-band 
drought index (NMDI, Wang and Qu 2007), the ratio of the short-wave-infra-red (SWIR) to the 
blue band and the Tasseled-cap-Wetness (Phillips et al., 2006). Yet their sensitivity to the LWP 
or SWP should be explored.  
In order to explore and define the utilities of satellite imagery for mapping LWP/SWP, we 
outlined three objectives: (1) to test the effect of water stress on published and new-introduced 
Vis-NIR spectral indices; (2) to correlate these indices from different satellite sensors to field 
crop LWP and orchards SWP; and (3) to assess the accuracy of the best index by crop 
measurements solely based on this index. 
Methods 
We conducted the research in commercial plots of alfalfa, cotton, vineyards, almonds and citrus 
(Table 1). The research sites were in Israel and in New South Wales, Australia. We located 
each site in the center of Landsat-8 pixel and at least 60 meters from the border of the plot, to 
insure to eliminate border effects. We conducted the crop measurements at the same day, or 
one day after the satellite overpassed. At each time, we confirmed that the irrigation was not 
operated a couple of hours before the measurements took place as well as between the times 
of the measurement and the overpassing of the satellite.  
We performed the crop water potential measurements around the time of solar zenith. In 
orchards the leaves were warped during the morning and were picked at least two hours after 
the time of solar zenith, while in field crop leaves were warped prior to clipping. After clipping the 
leaves, both, in orchards and field crops, we stored the leaves in dark cooling boxes and 
conducted the measurements within no more than 15 minutes. We utilized the pressure 
chamber model 655 (PMS Instrument Company, Albany, OR, USA) for the LWP and SWP 
measurements. In addition, we calculated vegetation fraction by a mobile application- Canopy 
Cover Free (https://apkpure.com/canopy-cover-free/com.heaslon.canopycover) and leaf-area-
index (LAI) by SunScan model SS1 (Delta-T Devices, Cambridge England). 
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Table 1. Data collection sites, dates and sensors 

Crop Central point coordinates 
(Lat/Long) 

Measurements 
date 

Sites Sensor 

Almonds   32.8 /  35.5 7-Apr-2016 3 LS8 

   32.8 /  35.5 16-Apr-2016 3 SN2 

   32.8 /  35.5 16-May-2016 3 SN2 

   32.8 /  35.5 26-May -2016 3 SN2 

   31.6 /  34.6 26-June-2016 3 LS8 

   31.6 /  34.6 26-June-2016 3 SN2 

   32.8 /  35.5 25-Augr-2016 3 SN2 

   31.6 /  34.6 14-Sep-2016 6 LS8 

 -34.2 / 145.9 18-Oct-2016 9 LS8 

 -34.2 / 145.9 2-Nov-2016 9 LS8 

  32.8 /  35.5 10-Oct-2017 6 SN2 

Citrus  32.5 /  34.9  9-March-2017 5 LS8 

  32.5 /  34.9 12-April-2017 5 LS8 

  32.4 /  34.9 9-May-2017 5 SN2 

  31.4 /  34.6 21-May-2017 3 SN2 

  32.4 /  34.9 4-June-2017 3 LS8 

  31.4 /  34.6 20-July-2017 3 SN2 

Vineyards  31.9 /  34.9  3-June-2016 3 SN2 

  31.9 /  34.9 25-June-2016 3 SN2 

  31.9 /  34.9 26-June-2016 3 LS8 

  31.9 /  34.9 12-July-2016 3 LS8 

 -34.1 / 146.1 18-Oct-2016 8 LS8 

 -34.1 / 146.1 2-Nov-2016 8 LS8 

 -34.1 / 146.1 21-Dec-2016 8 LS8 

 -34.1 / 146.1 17-Feb-2017 8 SN2 

Cotton  32.6 /  35.2 5-June-2016 4 SN2 

  32.6 /  35.2 26-June-2016 3 LS8 

  32.6 /  35.2 4-July-2016 5 LS7 

  33.0 /  35.6 12-July-2016 3 LS8 

  31.8 /  34.8 20-July-2016 5 LS8 

  32.6 /  35.2 25-July-2016 4 SN2 

  33.0 /  35.6 28-July-2016 3 LS8 

  32.7 /  35.1 13-Aug-2016 4 LS8 

  32.7 /  35.1 13-Aug-2016 4 SN2 
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  31.8 /  34.8 28-Aug -2016 4 LS7 

 -34.3 / 145.8 10-Feb-2017 8 SN2 

   32.6 /  35.3 30-July-2017 6 SN2 

Alfalfa   32.5 /  34.9 11-May-2017 4 SN2 

   32.5 /  35.5 20-June-2017 5 SN2 

   32.5 /  35.6 13-July-2017 3 LS8 

   32.5 /  35.5 1-Aug-2017 3 LS8 

   32.5 /  35.6 10-Aug-2017 3 SN2 

   32.5 /  34.9 16-Aug-2017 4 LS8 

   32.5 /  34.9 7-Sep-2017 4 SN2 

   32.5 /  35.5 22-Mar-2018 6 LS7 

 
We downloaded the Landsat imagery Level 1 from the US geological Survey website 
(https://earthexplorer.usgs.gov/) and processed the images to top-of-atmosphere (TOA) 
reflectance and brightness temperature values for each pixel 
(https://landsat.usgs.gov/sites/default/files/documents/Landsat8DataUsersHandbook.pdf). The 
Sentinel-2 imagery were downloaded from the European Space Agency 
(https://scihub.copernicus.eu/dhus/#/home) with TOA reflectance values. We converted the 
TOA values to surface reflectance with an Empirical Line model, utilizing 12-15 sites with 
different land-covers. We collected the surface reflectance values for this model from the 
Landsat Collection Level -2 products. We calculated different vegetation indices (Table 2) and 
extracted these values from the pixels of the sites. In addition to the water stress and spectral 
indices described above, we also tested several indices that are known to be sensitive to crop 
vigor and mass, as the normalized differences vegetation index (NDVI, Rouseet al., 1974)), the 
enhanced vegetation index (EVI, Huete et al. 2002) the red-blue normalized index and the 
green-red normalized index (RBNI and GRNI respectively, Beeri et al., 2017). We introduced 
new indices (equations 9-12, Table 2) based on evaluation of spectra from well-watered and 
water-stressed plants, as will be described later. 
The spectral data was paired to the corresponding crop measurements, and we calculated the 
correlation for each date and each image. We also performed an ANOVA test with post-hoc 
Tukey-HSD to check if sites in the same field differ significantly from each other.  
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Table 2. Spectral vegetation indices 

Equation 
number 

Index Name Equation Known 
sensitivity 

1 NDVI (B4 – B3)/(B4 + B3) Vigor 

2 EVI 2.5*(B4 – B3)/(B4 + 6*B3 – 7.5*B1 + 1) Vigor 

3 Tasseled 
Cap Wetness 

(B1*0.14+B2*0.18+B3*0.33+B4*0.34-
B5*0.62-B7*0.42) 

Moisture 

4 B7/B1 B7/B1 Moisture 

5 NDWI (B4 – B5) / (B4 + B5) Moisture 

6 NMDI (B4 – (B5 - B6)) / (B4 + (B5 - B6)) Moisture 

7 RBNI (B3 – B1) / (B3 + B1) Vigor 

8 GRNI (B2 – B3) / (B2 + B3) Vigor 

9 GBNI (B2 – B1) / (B2 + B1)  

10 WSI1 (B5 + B6)/ B4  

11 WSI2 (B5 – B1) / B4  

12 WSI3 (B4 – (B5 + B6)) / (B4 + (B5 + B6))  

Bands central wavelength (nm): B1-495; B2-560; B3-665; B4-835; B5-1615; B6-2200 
 
Results   
 
The effect of leave and plant water stress as expressed in the sensor bands and the vegetation 
indices 
To examine the effect of water stress on leave and plant spectra, we utilized dataset published 
by Hunt et al (Hunt et al., 1987), including Landsat bands spectra of 4 groups: full watered (non-
stress) and very dry (water-stressed), both on leaf and plant levels. We calculated the above 
spectral indices based on this dataset and further calculated the relative difference between the 
non-stress and the water-stressed indices values as follows: 
Relatively difference = (non-stress – water-stressed) / (non-stress)    (13) 
These results show that vigor indices, as the NDVI, EVI and GRI had low sensitivity to the water 
stress, while the SWIR bands and their related indices had higher sensitivities with consistent 
results for both leaf and plant levels. Further, the new-introduced indices, WSI1-WSI3, reach the 
highest sensitivity values. These results confirmed our knowledge that vigor indices are not 
suitable to detect water stress while moisture indices have better sensitivity to this parameter. 
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Table 3. Spectra of leaves and plants, with and without water stress of Agave deserti. The 
values for the first rows, B1 to B6 are from Table 1 in Hunt et al, 1987. A relatively difference is 
calculated according to the equation 13 above  

  Spectra Relatively difference 

Index 
sensitivity 

Index/band 
name 

Non-
stress 
leaf 

Water-
stressed 
leaf 

Non-
stress 
plant 

Water-
stressed 
plant 

Water 
stress of 
leaf 

Water 
stress of 
plant 

 B1 0.343 0.356 0.045 0.068   -4%   -51% 

 B2 0.493 0.483 0.069 0.083    2%   -20% 

 B3 0.383 0.373 0.040 0.050    3%   -25% 

 B4 0.859 0.850 0.388 0.372    1%     4% 

 B5 0.262 0.371 0.042 0.085 -42% -102% 

 B6 0.116 0.167 0.018 0.037 -44% -106% 

        

Vigor  NDVI 0.383 0.390 0.813 0.763     -2%     6% 

Vigor  EVI 0.751 0.841 0.674 0.693   -12%    -3% 

Moisture Wetness 0.344 0.249 0.130 0.099    28%    24% 

Moisture B7/B1 0.338 0.469 0.400 0.544   -39%   -36% 

Moisture NDWI 0.533 0.392 0.805 0.628    26%    22% 

Moisture NMDI 0.709 0.613 0.883 0.771    14%    13% 

Vigor  RBI 0.055 0.023 -0.059 -0.153    58% -159% 

Vigor  GRI 0.126 0.129 0.266 0.248    -2%      7% 

 GBI 0.179 0.151 0.211 0.099   16%    53% 

 WSI1 0.440 0.633 0.155 0.328  -44% -112% 

 WSI2 -0.094 0.018 -0.008 0.046 119%  691% 

 WSI3 0.389 0.225 0.732 0.506   42%    31% 

 
 
Correlation analysis between the spectral indices and the field crop LWP and orchards SWP  
We calculated the above indices from the satellite imagery and conducted correlation analyses 
on the crop water potential. The differences inside the crop plots are directly related to the 
successfulness of the imagery detection (Figure 1). When the water potential values in different 
sites are not differing from each other, the ability of the imagery to detect any spatial variability 
is very low. However, when there are differences in the crop LWP, the correlations to the 
imagery are higher. Another issue is that when clouds were observed near the crop 
measurement locations, the correlations were also low. This may be related to the effect of 
clouds on the imagery calibration accuracy, and these clouds may present low VPD, which also 
relates to low LWP or SWP. Both issues decrease the ability of imagery to detect spatial 
variability in the crop water potential.  
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Figure 1. LWP average values (+STD) plotted against Wetness values in cotton fields 
 
The correlation analyses (Table 4) show very low values in the vineyards, suggesting that more 
work needs to be done (for example pan-sharpening to eliminate the soil or cover crop signals), 
prior to utilize satellite imagery for this propose. The correlations for the other crops present the 
effectiveness of the Wetness, which detects the spatial variability in the crop water potential, 
together with the NDWI, WSI1 and WSI3. It is worth to notice that the highest value in cotton is 
a vigor index, which represents a strong control on the crop growth via the weekly irrigation 
amounts in micro irrigation applications.  
 
Table 4. Correlation values between satellite imagery indices and LWP for alfalfa and cotton 
and SWP for vineyards, almonds and citrus. The bold numbers represent the highest value for 
each crop 

 Alfalfa Cotton Vineyard Almonds Citrus 

NDVI 0.66 0.69 -0.19 0.81 0.72 

EVI 0.66 0.77 -0.14 0.47 0.62 

Wetness 0.66 0.72 -0.27 0.88 0.93 
B7/B1 -0.43 -0.13 0.19 -0.71 -0.76 

NDWI 0.66 0.71 -0.34 0.84 0.88 

NMDI 0.25 0.53 -0.21 0.25 -0.23 

BRNI 0.59 0.52 -0.20 0.66 0.86 

GRNI 0.67 0.51 0.34 0.22 0.36 

GBNI 0.69 0.71 -0.12 0.82 0.81 

WSI1 -0.68 -0.72 0.33 -0.86 -0.88 

WSI2 -0.67 -0.59 0.29 -0.86 -0.93 
WSI3 0.67 0.71 -0.33 0.86 0.88 

 
Accuracy assessment of the water stress indices 
These findings lead us to utilize the Wetness index as a proxy, and assess its accuracy by 
measure the crop water potential in the extreme points. We conducted this assessment in 
alfalfa, cotton and almonds. 
The alfalfa assessment includes two plots, scanned by Landsat-7 at 21-March-2018. The 
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Wetness map (Figure 2) presents higher values in the western plot, therefore we placed 3 sites 
in each plot. The first site in each plot was in the driest place (41, 44), the second was in the 
most moisture pixel (42, 45) and the third was in a pixel with mid-range values. Another 
consideration to select the specific pixel in each place was the proximity of the NDVI values, to 
eliminate the effect of crop vigor and mass.  
 

 
Figure 2. Landsat-7 Wetness and NDVI maps, 21-March-2018 
  
The alfalfa measurements revealed significant differences in the LWP (P <0.05), but no 
differences in the vegetation fraction parameter. Further, as expected from Figure 2, the 
western alfalfa plot (sites 41-43) is wetter than the eastern plot (sites 44-46) while sites 42 and 
45 are wetter than 41 and 44 respectively. 
 

 
Figure 3. Alfalfa LWP and vegetation fraction average (+STD), 23-March-2018 
 
The cotton assessment was based on a Sentinel-2 image (Figure 4). We selected two sites in a 
dry area (201,203), two in a wet (202,204) and two in a mid-range (205-206).  
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Figure 4. Sentinel-2 wetness and NDVI maps, 30-July-2017 
 
The results confirmed this assumption (Figure 5), with significant differences in the LWP 
between the dry and the wet pixels (P <0.05). Furthermore, the LAI measurements, as proxy to 
vigor and mass, exhibit different patterns, especially in sites 203,205,206, with no difference in 
the LAI parameter, but with a significant difference between 203 to 205-206 in the LWP. 
 

 
Figure 5. Cotton LWP and LAI measurements average (+STD), 31-July-2017. The small letters 
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represent a significant difference between the sites 
 
The almonds assessment was based on a Sentinel-2 image and the resulted Wetness and 
NDVI maps (Figure 6). We choose 6 sites, 171-173 on the dry plots and 174-176 on the wet 
plots.  
 

 
Figure 6. Sentinel-2 Wetness and NDVI maps, 10-Oct-2017 
 
The LWP measurements confirmed our assumptions about huge differences among the wet 
and the dry plots (P <0.05). Yet, as the NDVI map is highly correlated to the Wetness map, the 
LAI measurements, with no significant differences between the plots, may also confirm the 
effect of the SWP on the NDVI values.  
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Figure 7. Almonds SWP and LAI average (+STD), 11-Oct-2017. The small letters represent a 
significant difference between the sites 
 
Conclusions 
Our results confirm the sensitivity of the Wetness and the water-stress-indices (based on the 
SWIR bands) to the spatial variability of LWP or SWP. More tests should be conducted on 
different crops and management protocols, but it can be concluded that Landsat-8 and Sentinel-
2 can be used together or separately to map relative plant water quantity in commercial plots 
and help growers to optimize their irrigation water usage.  
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