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Abstract. Information about the presence of weeds in fields is important to decide on a weed 
control strategy. This is especially crucial in precision weed management, where the position of 
each plant is essential for conducting mechanical weed control or patch spraying. 
For detecting weeds, this study proposes a fully convolutional neural network, which detects 
weeds in images and classifies each one as either a monocot or dicot. The network has been 
trained on over 13 000 weed annotations in high-resolution RGB images from Danish wheat  
and rye fields. Due to occlusion in cereal fields, weeds can be partially hidden behind or touch-
ing the crops or other weeds, which the network handles. 
The network can detect weeds with an average precision (AP) of 0.76. The weed detection net-
work has been evaluated on an Nvidia Titan X, on which it is able to process a 5 MPx image in 
0.02 s, making the method suitable for real-time field operation. 
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Introduction 
In order to conduct site-specific weed management and utilize selective herbicides, it is neces-
sary to know which weeds are present in the field. Furthermore, knowing weeds’ locations can 
be utilized by variable dosage sprayers, thereby reducing the herbicide usage further, as herbi-
cides are only allocated where needed. The composition of weed species can be inferred from 
images acquired in the field, which are analyzed automatically by a computer that then create 
optimal weed management strategies. 
Cereal1 fields account for 52% of the farmland in Northern Europe2 (Eurostat, 2016). Despite 
this, cereal fields are often ignored in camera-based precision weed control as most research in 
automated precision weed control is targeted high-value crops with a row distance that allows 
for inspection between rows. Cereal fields are challenging as weeds are often only partially visi-
ble due to overlap from nearby crops and weeds, as illustrated in Figure 1. Furthermore, cereals 
are monocotyledons, they have many visual similarities with grasses, which further complicates 
detecting them.  
After detecting weeds’ locations, their species can be estimated and weed distribution maps 
created (Dyrmann, 2017) that can be converted to optimal spray plans (Rydahl et al., 2017). In 
the agricultural domain, various methods for weed detection has been proposed. Early attempts 
were based on color-segmentation, which is still seen used in row-crops, where the spatial loca-
tion of plants can indicate whether plants are crops or weeds. However, in order to detect indi-
vidual plant-instances in highly occluded fields such as cereal fields, it is necessary to distin-
guish plants even when they are only partly visible. Methods for detecting overlapping plants in-
clude one by Lottes et al., (2016), who demonstrate a method for detecting weeds in sugar beet 
fields by combining global and local texture features. The method is, however, designed for me-
chanical weed control, where it is sufficient to distinguish different species, but not instances of 
the same species. Likewise, Skovsen et al., (2017, 2018) have demonstrated a fully-convolu-
tional network able to accurately distinguish clover from grass and weeds, but not individual in-
stances. 
Various convolutional neural network-based methods for object detection have been proposed 
in recent years. Best known is probably the RCNN method (Girshick et al., 2014), which con-
tains a region proposer followed by a standard CNN for classification. RCNN and its derivatives 
fast-RCNN and faster-RCNN are accurate, but their architecture limits their usage due to long  

                                                
 
1 Barley, Durum wheat, Oats, Rye, Wheat and spelt, maslin, Triticale, and other cereals n.e.c. (buckwheat, millet, canary seed, etc.) 
2 Countries defined as Northern Europe by the United Nations Statistics Division: Denmark, Estonia, Finland, Iceland, Ireland, Lat-
via, Lithuania, Norway, Sweden and The United Kingdom 

 

Fig. 1 Sample of partly hidden weeds in a wheat field. Image from training data (red=monocot, blue=dicot) 
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processing times on standard hardware. The YOLO-architecture (You Only Look Once) 
eliminates the separated region proposer and classifier, by combining it in one fully-convolu-
tional network, allowing it to run real-time on standard consumer hardware. The more recent 
SSD (Single Shot MultiBox Detector) (Liu et al., 2016) build upon the ideas from YOLO, but in-
troduces a multiscale feature extractor, allowing objects to have more size-variation. 
The present study is based on the weed detection methods described in our previous study 
(Dyrmann, Jørgensen, & Midtiby, 2017), where a fully-convolutional network was used for de-
tecting weed instances in cereal-fields. However, as that method was only trained to detect 
weeds, without distinguishing monocots from dicots, it had problems detecting both at the same 
time as it only included one detection-threshold; If the detection threshold was low enough to 
detect most dicots, cereals were also mistaken for monocots, and setting the threshold right for 
detecting monocots resulted in missed dicots. 
Here, we base the weed detector on the Single Shot MultiBox Detector (SSD) by Liu et al., 
(2016), which utilizes the VGG16 network (Simonyan & Zisserman, 2014) as a multi-resolution 
feature extractor. The network is modified for detecting mono and dicotyledonous weeds in ce-
real fields despite occlusion. 

Material and methods 
In order to train the networks to be able to detect individual plants, it needs to be presented for a 
vast amount of training images to be able to handle real-world field variations. 
Images for this study has been acquired in various fields and at different times of the growing 
season. Images from field no. 1 in Table 1, were acquired using a cellphone camera, and the 
rest were acquired with the automated camera system, mounted onto an ATV while driving at 
up to 50km/h (Laursen et al., 2017). This camera system consists of a Point Gray Grasshopper 
3 that is synchronized with a xenon ring-flash. The camera exposes in 40µs per image, which 
ensures sharp images despite the speed. I the period from autumn 2016 till May 2018 the cam-
era system carried by ATV has collected 118 000 images in winter cereal and spring cereal 
fields covering an approximate area of 770 hectares. 
Images from maize, winter wheat and winter rye were collected from 7 fields. From five of those 
fields, 1368 images have been selected for training and validation, and 13 177 bounding boxes 
for plants have been annotated as either monocot or dicot. 
 

Table 1 Overview of images and weed instances in train and test-fields 
 Training Test  Crop (Latin) Date 

Field # Images # Plants # Images # Plants    

1  21 1341 0 0  Maize (Zea mays) 2016-06-14 

2  479 2491 0 0  Winter rye (Secale cereale) 2017-04-04 

3  842 7769 0 0  Winter wheat (Triticum aestivum) 2016-09-30 

4  0 0 26 139  Winter wheat (Triticum aestivum) 2016-09-30 

5  0 0 11 86  Winter wheat (Triticum aestivum) 2016-09-30 

6  11 856 8 335  Winter wheat (Triticum aestivum) 2017-10-19 

7  15 720 9 559  Winter wheat (Triticum aestivum) 2017-10-19 

total 1368 13177 54 1119    
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Images from winter wheat and rye were collected from 7 fields. From five of those fields, 1368 
images have been selected for training and validation, and 13 177 bounding boxes for plants 
have been annotated as either monocot or dicot. 
Further 54 images have been selected for the test, in which 1119 plants have been annotated. 
The image-data is summed up in Table 1 and a sample is shown in Figure 2. The images have 
a ground sampling distance of 4-6px/mm. 

Network architecture 
The convolutional neural network used for training is based on the SSD512 architecture by Liu 
et al., (2016), which is a fully-convolutional network for object detection. As the network is fully-
convolutional, it needs only a single forward-pass for determining plants’ locations. 
The network uses the first five layers of VGG16 as basic feature extraction layers, which en-
sures a rich pool of general features, that is combined in the network’s latter layers. After these 
first five layers, sub sequential convolutional layers are added, which decrease in size progres-
sively and thereby enables the network to detect plants at multiple scales. 
In order to determine the locations of weeds, the network uses a set of default bounding boxes 
at each location in the final feature maps, for which it generates a score. The scores at these 
feature maps indicate the confidence in the presence of monocots or dicots at that location as 
well as how the default bounding boxes should be offset and stretched to fit the weeds’ shapes 
in the images. The network architecture is sketched in Figure 3. 

 
(a) 

 
(b) 

Fig. 2 (a) Camera platform attached on the back of an ATV, (b) Sample image acquired at about 40km/h 

 

Fig. 3 Network architecture (after Liu et al., 2016) 
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During training the images are cropped randomly between 6.25% and 100% of their size, and 
afterwards scaled to 512×512pixels. This scaling help making the network scale-invariant. Fur-
thermore the hue was randomly altered to make the network invariant towards light-settings. 
Training was conducted using the ADAM optimized with a cost that consists of a weighted sum 
between a localization loss and a detection loss. The localization loss is an L1 norm of the off-
sets of the predicted bounding boxes relative to the annotated bounding boxes. The detection 
loss is implemented as a softmax with cross-entropy loss, which indicates if an object is at the 
location of the bounding box. 
Because of this latter part of the loss, all weeds in the training images must be annotated, as a 
missing plant in the training data will penalize the detector if it detects the unannotated weed. 
For further description and implementation details see (Liu et al., 2016) and (Balancap, 2017). 

Evaluation 
As to evaluate the weed detection ability, we assess the Intersection Over Union (IOU), which is 
the common area of a detected bounding box and an annotated bounding box in proportion to 
the area that the annotation and detection cover together. 
A plant is considered detected if the IOU of the detected bounding box and the annotated 
bounding box is more than 0.10. Normally object detection algorithms are evaluated with a 
higher IOU, but the reason for this threshold is twofold: Firstly, the main objective is to count the 
number of weeds, for which reason precise bounding boxes is of less importance. Secondly, for 
small plants, the annotations are not fully aligned with the plants in the training and test data. 
This means that a detection that perfectly aligns with the plants, will not get an IOU of one. This 
is illustrated Figure 4, where a plant is shown with a manual annotation. In this case, the IOU is 
of a perfect detection and the manual annotation is only 0.12. 

Results and discussion 
A total of 1119 plants were annotated in the 54 test images. 682 of these 1119 annotated plants 
were detected automatically. This yielded a recall of 0.60 and a precision of 0.82. The average 
IOU for the accepted detections is 0.37. Except for the accepted detections, there are 152 de-
tections, which does not match with any annotation. Overall, these false detections or missed 
detections can be categorized into five: cereal that is misclassified as weeds; small plants;  
plants exposed to heavy occlusion; plants where only part of the plant has been detected; and 
defoliation from nearby shelter-belts, that is confused with weeds. 

 
Fig. 4 Bounding boxes in training and test set is not fully aligned with weeds, which results in low intersections-over-

union. In this sample, the intersection over union is 0.12 
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(a) 
 

(b) (c) (d) 
 

 (e) 

Fig. 5 Samples where the algorithm fails at detecting weeds. (a) cereal misclassified as weed, (b) undetected small weed, (c) 
undetected occluded weed, (d) large weed detected as multiple instances, (e) oak leaf misclassified as weed 

  

Fig. 6 Samples from the test dataset, where the algorithm’s detections of dicots are shown in light blue, the ground truth di-
cots are shown in dark blue, and the ground truth monocots are shown in dark red (not detected) 

The mean size of all the hand-annotated bounding boxes is 5137 pixels, ranging from 180 pixels 
for the smallest annotation up to 293 040 pixels for the largest annotation. An evaluation of the 
missed detections shows that on average the size of these bounding boxes is 2378 pixels, 
which indicates that small weeds are hardest to detect and that the network could benefit from 
more small weeds in the training data. Samples from the test images are shown in Figure 6, 
where the algorithm’s suggested locations are shown along with the manual annotations. 
The average precision of detected weeds is 0.76 i.e. without distinguishing monocots from di-
cots. However, when considering the mean average precision (mAP) across classes, it drops to 
0.42. This is mainly due to monocots, which are less often detected and as they account for only 
2.4% of all weeds, the influence from each monocot error is relatively larger. These results indi-
cate that the method is suitable for detecting dicots in cereals, and to some extend monocots, 
which is, however, often mistaken for being cereals.  
The images in the test set are relatively similar to those in the training set, and a decrease in de-
tection accuracy should, therefore, be expected when evaluating on images that differ greatly 
from those in the training set. Nonetheless, it is believed that a more extensive training-set can 
make the method robust towards more variation in the images. Here it should be noted, that the 
network was trained several times without convergence before it succeeded. A larger training 
set will probably only make convergence harder and it is thus suggested to progressively add 
more variation to the training set, rather than training on all data from the start. 



Proceedings of the 14th International Conference on Precision Agriculture 
June 24 – June 27, 2018, Montreal, Quebec, Canada Page 7 

Conclusion 
So far current methods for weed detection have had trouble with detecting weed instances in 
cereal fields due to heavy leaf occlusion.  
We addressed the problem of detecting weed instances by using a modified version of the SSD 
detector, which is a fully convolutional neural network. This network has been trained to distin-
guish monocot weeds and dicot weeds from cereals. A previous attempt at detecting weeds us-
ing a fully convolutional neural network showed problems in handling both monocots and dicots 
simultaneously. This is sought solved by separating the monocot and dicot detector. 
Results show that the algorithm achieves an average precision of 76% and that it detects 60.0% 
of the annotated weeds. However, large weeds cause trouble as they are often detected as mul-
tiple instances. Further training on images containing large weeds is, therefore, the natural next 
step. 
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