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Abstract. This paper presents a method which can provide support in determining the grass-clover 
ratio, in grass-clover fields, based on images from an unmanned aerial vehicle. Automated 
estimation of the grass-clover ratio can serve as a tool for optimizing fertilization of grass-clover 
fields. A higher clover content gives a higher performance of the cows, when the harvested material 
is used for fodder, and thereby this has a direct impact on the dairy industry. An android application 
is implemented to make the drone fly fully autonomously and collect images at different locations 
within the field. In this android application it is possible to specify what location the drone should 
collect images from, which height, and upload the images to a server, which analyze the data based 
on a convolutional neural network. The convolutional neural network performs a semantic 
segmentation and thereby pixelwise classify the different classes: grass, clover, soil and weed. The 
classification of the pixels is used to determine the final grass-clover ratio. The results, presented in 
this paper, show that the CNN is able to segment the images into the different classes: grass, clover, 
soil and weed. It is possible to identify the different classes based on images captured at a height 
up to five meters. Thus, this paper shows a way to use UAVs to perform mapping of actual clover 
and grass ratio in dense grass-clover fields.  
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Introduction 
Automated estimation of the grass-clover ratio can serve as a tool for optimizing fertilization of 
grass-clover fields. When the harvested material is used for fodder, cows achieve high 
performance when the clover content is high. Thereby this has a direct impact on the dairy 
industry.  
Clover and grass are often grown in mixtures, as grass-clover leys with different species increase 
the yield stability (Eriksen et al. 2014; Frankow-Lindberg et al. 2009) and herbage quality (Phelan 
et al. 2015) compared to fertilized grass-only leys. This is due to niche complementarity (Nyfeler 
et al. 2009) and the greater protein content of the clover (Egaard 2009; Suter et al. 2015). The 
clover is able to fix nitrogen (N) from the air, but if there is enough available N in the soil, the grass 
will outperform the clover. It is thus possible to change the grass-clover ratio by adding more or 
less N in fertilizer. In order to implement targeted fertilization in practice, it is important to firstly 
estimate actual clover content, and secondly optimize fertilization based on clover content.  
Previous research within automated clover-content estimation from images include pixel-wise 
classification of grass-clover images based on color indexes, edge detection, and morphological 
operations (Bonesmo et al. 2004). Himstedt et al. (2009) used digital image analysis on images 
of grass-legume mixtures from a pot experiment to determine the relative legume dry matter 
contribution. The image analysis was used to determine the legume coverage (red clover, white 
clover, or alfalfa) by applying a sequence of morphological erosions and dilations. In each image, 
the legumes were manually encircled to determine the actual legume coverage. An improvement 
of this work was presented in (Himstedt et al. 2012), where images were filtered in hue, saturation, 
and value (HSV) space and applying color segmentation to separate plants and soil after a 
sequence of morphological operations. McRoberts et al. (2016) used local binary patterns to 
estimate the grass fraction from color images converted to grayscale. The images were tiled into 
64 × 64 pixel blocks, which were manually labeled as either legumes, grass, or unknown.  
Current methods experience uncertainty in the image recognition process. Although the use of 
morphological operations has been shown to correlate with the clover content in the images, it 
lacks robustness with regards to parameters such as field conditions, scale invariance and 
estimation uncertainty. Due to varying clover sizes, vegetation heights, or camera resolutions, the 
parameters of the existing methods need adjustments, to avoid a drop in performance, as seen 
in the work of Himstedt et al. (2010), where the change from using green house pots to field 
conditions reduced performance.  
In this paper, a system, which can provide support in determining the grass-clover ratio based on 
images from an unmanned aerial vehicle, is presented. The system is an extension of the work 
presented in (Skovsen et al. 2017), and thus, the underlying algorithmic approach is similar to the 
one presented in (Skovsen et al. 2017). A deep convolutional neural network, based on the fully 
convolutional network (FCN) architecture (Long et al. 2015), is utilized to directly classify relevant 
plant species visible in the images (Dyrmann et al. 2016; Mortensen et al. 2016). The 
convolutional neural network is designed to output a semantically segmented image, specifying 
the plant species of every pixel in the image. Based on the detected composition of coverage of 
grasses, clovers, and weeds in the image, the clover content is estimated. The system consists 
of an android application, which is used to design a route plan for the UAV, and make sure that 
the images are captured at the desired locations and height. Captured images are processed 
after the image acquisition process, based on automated image upload from the android 
application. 
The paper is organized as follows; the materials and methods section describe the procedure for 
data acquisition in the parcel trials. Methods for pixelwise segmentation and training of the 
convolutional neural networks for semantic segmentation are also presented in this section. This 
is followed by a results section, where both the pixelwise segmentation and its relation to actual 
grass-clover dry matter is presented. Furthermore, a workflow for utilizing the presented methods 
in an actual agricultural production, is presented. The paper ends with a discussion and 
conclusion of the presented work. 
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Materials and methods 
In this section, the process of image acquisition in parcel trials is presented. This is followed by a 
short description of the methods used for automated pixel-wise segmentation of the captured 
images. For a detailed description, please refer to (Skovsen et al. 2017). 
Data acquisition 
The images were captured over two different days, with very different weather conditions. One 
day, the weather was cloudy, and the other day, the sun was shining from a bright sky. This is 
clearly visible in the examples shown in figure 1. The images originate from two different locations 
in Denmark. Images were captured both at Aarhus University, Foulum and at the DLF Seed & 
Science grass-clover breeding facility in Stevns. UAV images were captured at different heights, 
to measure the expected drop in performance when the UAV were capturing images at a coarser 
scale.  
 

Fig 1. Examples of the images captured by the UAV. (a) Image captured at Foulum, (b) Image captured at Stevns 

 
In Foulum, the images where captured in a field trial, which consisted of 60 grass-clover plots with 
five different fertilization strategies (0, 50, 100, 200, and 300 kg total-N in catlle slurry/hectare) 
applied in a randomized design.  
In Stevns, a total of 50 plots were selected by visual inspection to maximize the spread in clover 
fraction, total yield, time since establishment, stress levels, and phenotypes.  
At both locations, patches within the plots were manually cut and clover, grass and weed dry 
matter were measured. The patched were marked with a quadratic visual indicator (visible in 
figure 1) to enable comparison between the image based, and the manual grass-clover dry matter 
estimation. As such, only the part of the image inside the visual indicator is analyzed in the results 
section of this paper. 
  

(a) (b) 
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Semantic segmentation 
Semantic segmentation is understanding an image at pixel level, so it is possible to assign each 
pixel in the image to an object class. An example of this is shown in figure 2. Here, all the pixels 
in the original colour image has been assigned to an object class, defined by the colour coding in 
the rightmost image.  

 
Fig 2. Example of the pixel-wise classification through semantic segmentation. Clover pixels are labeled with orange, 

grass pixels are labeled with green and weed pixels are labeled with yellow (Skovsen et al. 2017). 

 
As with image and object classification, convolutional neural networks (CNN) have had enormous 
success within the task of semantic segmentation. In 2014 Fully Convolutional Networks (FCN) 
by Long et al. (2015) popularized the use of CNN architectures for dense pixel-wise predictions 
without any fully connected layers. This allows segmentation maps to be generated for images of 
any size.   
The architecture of the network used in this paper is the Fully Convolutional Network (FCN-8s) 
architecture by Long et al. (2015). This model is a modification of the VGG16 architecture 
(Simonyan and Zisserman 2014) which is made fully convolutional by replacing fully connected 
layers with convolutional layers. The network then produces spatial feature maps instead of single 
labels (as in image classification). The last convolutional layer and the two intermediate layers 
are followed by deconvolutional layers that upsamples the network output to the same size as the 
input image. The architecture can be seen in figure 3.   
 

 
Fig 3. Overall overview of the utilized FCN model (Skovsen et al. 2017) 

 
  

(a) (b) 
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Model training 
CNNs require large amounts of labeled training data in order to adjust the millions of parameters 
in the model. For semantic segmentation the labeled training data consist of images where each 
pixel in the image has been labeled as one of the output classes. This is a very time-consuming 
process, especially with respect to the requirements for the number of labeled images. 
As described in (Skovsen et al. 2017), another method of getting labeled images is by generating 
new, artificial, images from already labeled data. The trained network is based on high quality 
images, captured in a static setup, with a high-quality DSLR camera (Nikon D810A). The 
simulated data from these images does not represent the images which are to be captured by a 
commercially available UAV, such as the DJI Phantom 4. Therefore, new artificial images have 
been simulated, based on images captured by the UAV, and used in the model training. 

 
Fig 4. Examples of the image crops being used to generate simulated data with known pixel labels. 

 
The artificial images are generated is by cropping examples of the object classes, which are to 
be detected in the UAV images. In the presented work, the classes are soil, weed, clover and 
grass. A total of 40 different weeds, clover and grass has been cropped and used to generate 
images according to the method presented in (Skovsen et al. 2017). Some examples of the 
different classes used for creating the training images can be seen in figure 4. All of the image 
crops are based on images from Foulum, and does not include any clover, weed or grass from 
the Stevns dataset. An example of a simulated image image is shown in figure 5. 

 
Fig 5. An example of a simulated image 
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Results 
This section presents the achieved results. First, a visual illustration of the obtained semantic 
segmentation is presented. This is followed by an evaluation of the relationship between the pixel-
wise estimated grass-clover ratio and the actual dry matter in within the patch. Lastly, the workflow 
of utilizing these algorithms in real-life scenarios, in the fields, is presented. 
 
Segmentation 
In figure 6 an example of a segmentation at 2 meter flying height is shown. In the visual inspection 
it is seen that most of the grass (green), weed (yellow) and clover (orange) have been labeled 
correctly. A small part of the image has not been labeled, as the model was uncertain to which 
class to assign the pixels. However, this is a small part of the image, and often in areas with very 
dark shadows. 

 
Fig 6. Pixel-wise classification in an image captured by the UAV 

 
As described in the data acquisition section, UAV images were captured at different height to test 
the performance in various settings. A higher capture height would allow the UAV to cover larger 
parts of the field with one image, thus improving efficiency with respect to battery usage per 
hectare. In figure 7 it is seen that the model is able to estimate the presence of clover and grass 
at all measured heights. It is seen that in low capture heights, more weeds are present in the 
image. This is because the rotors from the UAV have blown some of the lighter grass to the side, 
allowing for weeds to be visible. 
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Fig 7. Visual interpretation of results at different acquisition heights. (a) 1 meter (b) 1.5 meter (c) 2 meter (d) 2.5 meter (e) 3 
meter and (f) 5 meter 

 
 
 

(a) (b) 

(c) (d) 

(e) (f) 
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Figure 7 are based on data captured in Foulum, where the weather was cloudy and therefore 
ideal for capturing images using the UAV. In Stevns, where the other dataset was collected, the 
sun was shining from a bright sky. This resulted in images with very bright patches and areas with 
hard shadows. Furthermore, the model was not trained on simulated data from Stevns images. 
In figure 8, and example from the segmentation in the Stevns dataset is shown. Here, it is seen 
that the model correctly estimates a large part of the clover correctly, and only as small part of 
the clover underneath the grass have been falsely labeled as grass.   

 
 Fig 8. Pixel-wise classification in UAV image from Stevns 

 
Using the method in real-life 
In the visual interpretation of the segmentation presented above, some pixels are not classified 
correctly. Further development could and should improve this performance. However, with 
respect to the agricultural production two parameters is of interest; namely the actual dry matter 
within the field and the knowledge of where to apply more or less fertilizer. 
In all plots, a small part of the plot has been manually cut, and the dry matter of grass, weed and 
clover has been measured. The small part, indicated by a visual indicator, has likewise been used 
as input to the CNN. In figure 9, the relationship between the manually measured dry matter clover 
fraction and the automatically estimated pixel-based clover fraction, is shown. The pixel-based 
clover fraction are results from capture heights of 2-4 meters, which provided the most consistent 
result throughout the parcel tests. From the graphs it is seen that there is a relation between the 
dry matter and the estimated clover content, however especially in the Foulum dataset, this linear 
relation is not very strong. In the Stevns dataset, the measured data is more distributed between 
low and high clover content, and this relation is also captured by the automated image processing.   
 

(a) (b) 
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Fig 9. Relationship between measured dry matter clover fraction and estimates pixel-based clover fraction in Foulum (a) 

and Stevns (b) 

 
The data that is currently available shows that is it currently not possible to estimate the ratio of 
clover dry matter, based on UAV based analysis. However, it is possible to detect the ratio 
between visible clover, grass and weed, which can be utilized to manage the relative fertilization 
strategy within a given field. Based on this, an android application has been developed in order 
to automate the process of generating grass-clover ratio maps of agricultural fields instead of field 
patches. 

 
Fig 10. Dataflow of utilizing the presented model together with a commercially available UAV. The flight plan and context 
are controlled by an Android application and the analysis is done via cloud computing. The result is a grass-clover ratio 

map, which can be utilized for management of fertilization 

 
The dataflow is depicted in figure 10. The android application (1) automatically generate a flight 
plan with waypoints for the location of image captures (2). The boundary of the fields is either 
pulled from an online database or manually generated. After the flight operation, where images 

(a) (b) 
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are captured at a defined height at every waypoint, the field information is stored in the application 
(3). Based on this information, the images, with their GPS coordinates, are uploaded to a 
computing server in the cloud (4). Here all images are processed using the presented model (5), 
and all resulting grass-clover ratios are collected into a resulting grass-clover ratio map (6). 
 
Discussion 

The proposed system is capable of performing pixel-wise classification of grass-clover images 
into four classes: grass, weed, clover and soil. As the image acquisition height is increased, it is 
seen that more miss-classifications are introduced. In order in increase performance in CNN 
models, more training data is useful. A procedure for simulating training data have been presented 
in this paper, however the current method only utilizes clover, grass and weeds from one field at 
one type of weather condition. In the future, this could be increased. 
As presented in the result section, it is currently not possible to predict the actual ratio of clover 
dry matter within the fields. It was seen that the relation between the actual dry matter and the, 
from image processing, estimated fraction, was different for the two locations. As seen in 
(Skovsen et al. 2017) are clear relation between the ratios have been shown. However, the results 
presented by Skovsen et al. (2017) arise from data collected at an earlier stage in the season, 
and they are therefore not directly comparable. More research needs to be done to clarify if and 
when the UAV can be used to estimate the clover dry matter ratio. Mortensen et al. (2017) 
presents a method for incorporating climate data to improve upon dry matter estimation. This 
could also be part of further development for utilizing UAVs for this task. 
Based on the visual interpretation of the resulting segmentation, it is seen that the UAV images 
are suitable for estimating whether a part of the field has more or less clover than other parts of 
the field. Using this knowledge, it is possible to build a clover ratio map, which can be used for 
the subsequent fertilization strategies. The workflow for obtaining this has been presented and is 
currently based on commercially available UAVs coupled with on-line cloud computing. 
Conclusion 
This paper has demonstrated how a UAV can be utilized to capture images of grass-clover fields 
and estimate the ratio between clover and grass visible in the image. The presented model is able 
to detect clover in images from the UAV at acquisition heights up to 5 meters. A workflow for 
utilizing this has been presented. The workflow consists of an automated waypoint route plan for 
a commercially available UAV, which captures images at a predefined height. Based on these 
images, a grass-clover ratio map is generated. This map can subsequently be part of the 
fertilization strategy within a given field. 
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