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Abstract. The relative cost of Nitrogen (N) fertilisers in a cropping input budget, the 33% Nitrogen 
use efficiency (NUE) seen in global cereal grain production and the potential environmental costs 
of over-application are leading to changes in the application rates and timing of N fertiliser. 
Precision agriculture (PA) provides tools for producers to achieve greater synchrony between N 
supply and crop N demand. To help achieve these goals this research has explored the use of 
management classes derived from historic field data and in-season crop reflectance sensors in 
an attempt to quantify, and manage the effects of, spatial and temporal variation in N uptake. This 
simple study combines the two techniques to try and quantify in-season variation in N 
requirements, and furthermore attempts to improve the predictive ability of in-season yield 
prediction functions through the inclusion of historic soil and yield data sets. Experiments from 
two example fields are used to quantify seasonal variations in N using in-season reflectance data. 
A process was designed to build site-specific N requirement algorithms from reflectance and 
historic input data. The variation in historic yields and current season reflectance indices across 
potential management classes indicates that the magnitude of variation in plant N requirements 
is sufficient to implement management classes in conjunction with in-season crop reflectance 
sensors. Furthermore the development of modified site-specific yield prediction functions 
according to management classes built from soil ECa data, previous yield observations and 
calibrated yield prediction functions significantly enhanced yield prediction accuracy. These 
improved in-season yield predictions were used to construct N application strategies that proved 
more cost effective than traditional approaches. The combination of site-specific historic data and 
in-season reflectance information shows promise for the development of N application decision 
support to improve NUE in both economic and environmental terms. 
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Introduction 
In the past 50 years average wheat (Triticum aestivum L.) yields have increased significantly, 

resulting in larger requirements for Nitrogen (N) to support greater crop growth and development. 

This, along with increases in the price of N drives a continuous review of N usage and the rate, 

mode of application, and timing of N fertilisation. All this is aimed at improving the approximately 

33% nitrogen use efficiency (NUE) that is still observed globally in cereal grain production (Raun 

and Johnson 1999). The causes of low NUE have been extensively researched (Cassman et al. 

2002; Fageria and Baligar 2005; Goulding et al. 2008; Raun and Johnson 1999; Thomason et al. 

2000; Zebarth et al. 2007) with the conclusion that the main reasons for low NUE are due to the 

poor synchronisation of N supply with N crop demand. This, coupled with a poor knowledge of N 

uptake and spatial variability in resident soil N, means that current production practices may have 

high levels (70%) of N losses (Raun et al. 2002).  

 

Precision agriculture provides tools for producers to achieve greater synchrony between N supply 

and crop N demand. The use of PA technology allows variability within a field to be sensed and 

management strategies generated to capitalise on spatial variability (Brennan et al. 2007). The 

use of site-specific management classes has been a major contributor to this advance. Site-

specific management classes are defined as areas in which agronomically different production 

treatments may be required (Taylor et al. 2007). Identifying class boundaries typically relies on 

high spatial density historical crop production and landscape data. However such classes may be 

less consistent in characterising spatial variation in N uptake because of observed temporal 

variation attributed to seasonal weather and its effect on yield potential (Shanahan et al. 2008).  

 

The development of in-season, real-time crop reflectance sensors (Raun et al. 2001; Scharf and 

Lory. 2009; Holland and Schepers 2010.) has allowed the effects of seasonal variation in climatic 

attributes, such as rainfall, photoperiod and temperature on N uptake to be explored. (Lukina et 

al. 2001). Using these tools has the potential to minimise N losses, by helping to monitor and 

meet changing plant nutrient requirements (in space and time) as they occur in-season. A recent 

review by Colac and Bramley (2018) provides an excellent account of the impact the reflectance 

tools have had on improving NUE. One of the major findings is the lack of inclusion of variability 

in soil derived contributions to both N availability and supply. While some research has been 

conducted into comparing and/or including soil/landscape information in the processes of N 

fertilizer decision making using reflectance sensors (e.g. Erbertseder et al. 2005; Kitchen et al. 

2010; Tremblay et al. 2010) minimal research has targeted the incorporation of both site-specific 
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management classes derived from multivariate historical data and on-the-go real-time crop 

reflectance to try and quantify in-season variation in N requirements. This study uses both 

techniques to try and quantify in-season variation in N requirements between management 

classes using real time reflectance measurements. This preliminary research attempts to highlight 

a simple approach to improve the predictive ability of the Australian yield prediction functions 

through the inclusion of previous soil and yield data sets. This should further optimise the level of 

N inputs practically and economically, thus potentially reducing N losses and assisting to 

overcome the increasing costs of N as a cereal crop input.  

Materials and Methods 

Site description and experimental design 
Two fields in Gilgandra, northern NSW are used as examples in this study. The farm uses no-

tillage, controlled traffic farming practices. The average rainfall for the area is 558mm with in-

season winter rainfall averaging 307mm. However rainfall in the cereal growing season was 

71mm below average, which when coupled with above average temperatures (average daily 

maximum 25.6°C and average daily minimum 10.9°C) meant that moisture stress became a 

limiting factor in dryland wheat production. The experiment was carried out in two adjacent fields, 

‘Diamond’ (72 ha) and ‘Mugs’ (69 ha). ‘Diamond’ was sown with the wheat variety Ventura (short 

season spring wheat). ‘Mugs’ was sown with the wheat variety Strzelecki (long season spring 

wheat) on 21/5/2007. Both fields had no phosphorus (P) applied at sowing and no nitrogen (N) 

applied to the bulk of the field. Field-length N fertiliser treatment strips were established using 

urea fertiliser (46% N) in locations designed to include the extent of expected soil variability 

(Figure 1). Two treatment rates (non-limiting N and traditional) were replicated in each field. In 

‘Diamond’ and ‘Mugs’ the non-limiting N and traditional rates were 250 kg / 80 kg urea ha-1 and 

260 kg / 80 kg urea ha-1 respectively.   

 

Fig. 1. Experimental design of N strips in ‘Diamond’ and ‘Mugs’ fields in the trial year. 
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Historical and in-season data 
Soil apparent electrical conductivity (ECa) data was collected pre-season using a Geonics EM38® 

(Geonics, Ontario, Canada) and a Veris 3100® (Veris Technologies, Kansas, USA) at 20m 

swaths. Elevation data was also collected using an RTK GPS. Historic grain yield data from 

‘Diamond’ was available for year-2 and ‘Mugs’ (year-2, year-3 and year-4) collected using a Green 

Star® (John Deere, Illinois, USA) yield mapping system on 9m swaths. Normalized difference 

vegetation index (NDVI) data was collected using boom-mounted Green Seeker® sensors at 9 m 

swaths. Passes with the Green Seeker® were taken throughout the growing season.  

Data analysis 
Potential management class delineation 

Potential management classes were derived from soil attribute data layers (EM38 and Veris 0–

30 cm, 0–90 cm and 30–90 cm), previous seasons yield data and elevation data as available for 

each field. Class delineation was carried out using k-means cluster analysis in JMP (SAS) as per 

the protocol of Taylor et al. (2007). For each field, two and three potential management class 

options were constructed. This gave three monitoring combinations to be tested in each field: 

whole-field, two classes and three classes. 

 

Allocating point data  

In order to compare the in-season N response, NDVI readings and yield predictions with the final 

yield, the observations were colocated. End of season yield measurements from the yield monitor 

provided the location grid as it was the data set with the coarsest resolution and the common data 

requirement for all comparisons and analysis. All soil, previous yield, potential management class 

allocation, fertiliser rates and NDVI data was transferred to this location grid using a nearest 

neighbour procedure. Any sites on this grid that required an original observation to be moved from 

more than six metres away were removed from further analysis. 

  

Yield prediction and nitrogen requirement algorithms 

To predict yield in-season the NDVI data from the Green Seeker® passes was used in accordance 

with functions developed by NTech/Trimble. The process uses a series of generic functions (Eqns 

1–5) within region-specific algorithms. The regionality is achieved by local calibration of the 

functions providing different coefficient values (k). 

The series of functions forming the N application algorithm include:  
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   (1) 

   (2) 

 (3) 

   (4) 

   (5) 

Where: ‘YP 0’ is the predicted potential grain yield with no added fertiliser in kg ha-1; ‘ka’, ‘kb’, ‘kc’, 

and ‘kd’ are site-specific coefficients (an outline of the values for the proprietary algorithm being 

tested is seen in Table 1); ‘NDVI’ is the normalized difference vegetation index; ‘DFP’ is the 

cumulative days from planting where GDD > 0; ‘Max Yield’ is a defined maximum yield assumed 

as 6000 kg ha-1 for all algorithms; ‘RI’ is the response index; ‘NDVI N Non limited’ is the NDVI 

reading of the non limiting N strips; ‘NDVI N limited’ is the NDVI reading of the strips which may 

be limited by N; ‘RIadj’ is the adjusted response index; ‘Max RIadj’ is a defined maximum RI; ‘YP N’ 

the predicted potential grain yield with added fertiliser in kg ha-1; ‘Napplied’ is the amount of N 

fertiliser to be applied in kg ha-1; ‘PN’ is the percentage N in the grain; and ‘NUE’ is the nitrogen 

use efficiency which was assumed as 50% for all algorithms. 

 

In essence the algorithms begin with a function to predict yield (YP 0), and then use the RI to 

establish the crop yield response to added fertiliser and provide an N requirement. The main 

Australian function available from the sensor manufacturer for South Australia was used in this 

work (Table 1) as other manufacturer provided functions were tested and provided poorer 

predictions (data not shown). The yield predictions (YP 0) generated from within each algorithm 

using Equation 1 were correlated with actual observed yields to test their predictive ability.  

Table 1. Coefficient values for standard algorithms used to generate yield predictions and N requirements. 

Name Ka Kb Kc Kd Max  
RIadj PN NDVI  

Range 
Spring Wheat Rainfed 

South Australia 
(S.AU) 

 

1800 85 1.69 0.7 2.2 0.02 0.25–0.88 
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Modified function development 

Local farm functions were developed in an attempt to improve the predictive ability of the yield 

prediction functions. Development of new yield prediction functions was performed using two 

methods. The first involved the development of a calibrated yield prediction function for the farm 

(YP0FARM). The protocol (Oklahoma State University (2008)) outlines a process that requires the 

investigation of 10 points across 10 fields where no N fertiliser is applied. At growth stage Z30, 

NDVI data is collected for each point and this is used to generate the in-season estimation of yield 

(INSEY). INSEY is calculated by dividing the NDVI at each point by the cumulative days from 

planting (DFP), where GDD is greater than zero. A regression of INSEY against final grain yield 

provides the coefficients (k) for the calibrated site-specific yield prediction function (YP0FARM). The 

absence of previous season NDVI data meant that calibration was carried out on reflectance data 

from across the entire farm and the protocol was modified by randomly identifying 100 points, 1 

from each centile of the reflectance distribution and obtaining a kriged estimate of yield at those 

points from the yield monitor data. 

 

The second method involved the inclusion of historic production data form each field to assist in 

explaining variability in the current season yield. Two processes for including this historic data 

into the production of modified yield prediction functions were established. The first used the 

spring wheat rainfed S.AU YP 0 function plus historic information, and the second used the 

‘FARM’ calibrated function (YP0FARM) with the inclusion of historic data. Both processes used 

stepwise multiple regression to determine which historical data layers were significant in 

improving yield prediction. This process was carried out for each whole field, and also class-

specific functions were developed for each of the potential management classes within both fields. 

The modified yield prediction functions were then run across the NDVI data in both fields allowing 

correlations to be drawn between the predicted and actual yields. The correlations for all 

algorithms were carried out at the whole field scale and also by calculating predictions separately 

within each potential management class to quantify any impact of segregating production classes 

on yield prediction. The Akaike information criterion (AIC) was calculated as per Webster and 

McBratney (1989) to determine which modified prediction function performed best. 

Results 

Management classes 
The potential management classes for ‘Diamond’ (Fig. 2) and ‘Mugs’ (Fig. 3) show contiguity that 

suggests the spatial structure is suitable for implementing site-specific management classes (de 

Oliveira et al. 2007). An assessment of the optimal number of classes using the method of Whelan 

et al. (2002) suggests that the three management classes in ‘Diamond’ and two in ‘Mugs’ would 
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be feasible (Table 2). For completeness, two and three management class delineations were 

used in each field to assess the yield prediction functions and N management approaches. 

 

Fig. 2. ‘Diamond’ potential management classes based on soil sensor data (Veris 0–30 cm, 0–90 cm and 30–90 cm) and 
2005 wheat yield. (a) two management classes, (b) three management classes. 

 

Fig. 3. ‘Mugs’ potential management classes based on soil sensor data (EM38, Veris 0–30 cm, 0–90 cm and 30–90 cm), 
2001 and 2005 wheat yield, and 2004 canola yield. (a) two management classes, (b) three management classes. 

 

Table 2. Partitioning of mean yields according to potential management classes in ‘Diamond’ and ‘Mugs’. Confidence 
intervals (CI) provide an indication of the required magnitude in yield differences to quantify management class 

delineation. 

  
Grain Yield t ha-1 95% 

Confidence 
Interval (CI) 

3 Classes 2 Classes 
Class 1 Class 2 Class 3 Class 1 Class 2 

Diamond Wheat YR-2 2.80 3.09 2.51 2.98 2.61 ± 0.10 

Mugs Wheat YR-4 2.64 1.95 3.25 3.21 2.42 ± 0.14 
 Canola YR-3 1.60 1.00 1.56 1.56 1.46 ± 0.04 
 Wheat YR-2 3.83 2.94 3.77 3.77 3.61 ± 0.12 

 

NDVI and yield 
In-season NDVI data for the two fields (Table 3) demonstrate that NDVI levels generally increase 

with season progression. The more detailed temporal scale in ‘Mugs’ shows that the general 

increase of NDVI over the growing season has a reduction in mid September. This reduction is to 

be expected as at this growth stage (Z60) of the wheat plant, grain filling starts to occur which 

(a) (b

(a) (b) 
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results in N being redistributed from plant leaves (Hocking 1994) and the reduction of plant 

biomass and associated NDVI levels. There are observable differences in the NDVI between 

potential management classes in both fields. Observations of final yield across the two fields are 

shown in Figure 4a and Figure 4b. 

Table 3. Average in-season NDVI readings of 0 kg N ha-1 treatments. 

Field Pass Date 
 DFP  

(GDD > 0) Uniform 
Production 

3  Classes 2 Classes 
Class 1 Class 2 Class 3 Class 1 Class 2 

Diamond 22/08 66 0.500 0.510 0.518 0.456 0.517 0.473 

 21/09 96 0.678 0.688 0.691 0.643 0.691 0.658 

Mugs 25/07 62 0.384 0.366 0.392 0.397 0.395 0.369 

 21/08 89 0.775 0.765 0.734 0.790 0.789 0.757 

 7/09 106 0.788 0.790 0.710 0.805 0.804 0.767 

 13/09 112 0.753 0.750 0.699 0.761 0.761 0.741 

 

 

Fig. 4. (a) ‘Diamond’ 2007 wheat yield map; (b) ‘Mugs’ final wheat yield map. 

Standard yield prediction 
Yield prediction was higher than observed harvest yield across both fields, with a correlation value 

of 0.391 and 0.224 in ‘Diamond’ and ‘Mugs’ respectively (Table 4).  

Table 4. Correlations (r) of current in-season yield prediction function with final yield.  

Field 
Prediction 
Functions 

Whole Field 
3  Classes 2 Classes 

Class 1 Class 2 Class 3 Class 1 Class 2 

Diamond Spring Wheat 
Rainfed S.AU 0.39 0.50 0.31 0.25 0.40 0.35 

 No. of observ. 34941 13559 12846 8536 21198 13743 

        

Mugs Spring Wheat 
Rainfed S.AU 0.22 0.15 0.001 0.154 0.141 0.16 

 No. of observ. 27895 11116 2826 13953 15821 12074 
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Improved yield prediction  
Site-specific YP 0 

The YP0FARM function is shown in Equation 6.  

      (6) 

Where: ‘Site YP 0’ is the predicted potential grain yield with no added fertiliser in kg ha-1; and 

‘INSEY’ is the in-season estimation of yield. 

 

Modified site-specific yield prediction functions 

The development of modified site-specific yield prediction functions including soil ECa data and 

previous yield observations further enhanced yield prediction accuracy. Significant increases in 

correlations across both fields and all classes indicate that the prediction accuracy of the modified 

functions is an improvement in yield prediction accuracy compared to the standard algorithms 

(Table 5 and Table 6). The higher correlation values and the lower AIC indicates that the modified 

3 class site-specific function is the best yield predictor for both fields (Table 6). The improvement 

in yield prediction accuracy using the modified functions is further demonstrated by comparing 

actual yield maps (Fig. 4) with those built using the standard spring wheat rainfed S.AU function 

and the modified 3 class site-specific functions for both fields (Figures 5 and 6).  

 

Table 5. Correlations (r) of standard yield prediction function and modified site-specific yield prediction functions with final 
yield, per field and per potential management class. NB Spring Wheat Rainfed S.AU is the standard prediction function 

used. 

Field Prediction Functions 

3 Classes 2 Classes Whole Field 
Uniform 
Function Class 1 Class 2 Class 3 Class 1 Class 2 

Diamond Spring Wheat Rainfed 
S.AU 0.50 0.31 0.25 0.40 0.35 0.39 

 Modified  
(S.AU) 0.52 0.34 0.27 0.42 0.37 0.40 

 Site-Specific YP 0 
(YP0FARM) 0.55 0.35 0.31 0.45 0.40 0.43 

 Modified  
(YP0FARM) 0.57 0.38 0.32 0.47 0.41 0.44 

Number of observations 13559 12846 8536 21198 13743 34941 
        

Mugs Spring Wheat Rainfed 
S.AU 0.15 0.001 0.15 0.14 0.16 0.22 

 Modified  
(S.AU) 0.31 0.49 0.38 0.40 0.62 0.49 

 Site-Specific YP 0 
(YP0FARM) 0.18 0.17 0.16 0.19 0.27 0.24 

 
Modified  

(YP0FARM) 0.32 0.50 0.38 0.40 0.63 0.49 

Number of observations 11116 2826 13953 15821 12074 27895 

 

 

 

( ) ( )2YP0 2309.81 138107.84 INSEY) 84409266 INSEY 0.0078FARM = + ´ - -
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Table 6. Whole field correlations (r) and Akaike information criterion (AIC) of standard yield prediction function and 
modified site-specific yield prediction functions with final yield, per field. Note: The whole field correlation for the class-

specific functions was computed by recombining separate class predictions into a whole field.  

 Whole field correlation 
(r) 

Akaike information criterion 
(AIC) 

Prediction Function Diamond Mugs Diamond Mugs 

Spring Wheat Rainfed S.AU 0.39 0.22 326210 274972 
Site-Specific YP 0 (YP0FARM) 0.43 0.24 324863 274722 

Modified Uniform Function (S.AU) 0.40 0.49 325588 268522 
Modified 2 Class-Specific Function (S.AU) 0.42 0.58 325068 264974 
Modified 3 Class-Specific Function (S.AU) 0.43 0.66 324564 260133 

Modified Uniform Function (Site) 0.44 0.49 324272 268639 
Modified 2 Class-Specific Function (Site) 0.46 0.58 323362 264641 
Modified 3 Class-Specific Function (Site) 0.48 0.66 322653 260013 

Number of observations 34941 34941 27895 27895 

 

 

Fig. 5. Interpolated maps of predicted potential grain yield with no fertiliser (YP 0) in ‘Diamond’ using: (a) Spring wheat 
rainfed S.AU function, (b) Modified 3 class-specific function (Site). 

 

 

Fig. 6. Interpolated maps of predicted potential grain yield with no fertiliser (YP 0) in ‘Mugs’ using: (a) Spring wheat rainfed 
S.AU function, (b) Modified 3 class-specific function (Site). 

(a) (b) 

(b) (a) 
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Discussion 
Enhancing NUE using in-season crop reflectance sensors requires spatial variability to be sensed 

accurately and N applications tailored to meet spatial N requirements. Using potential 

management classes in SSCM further requires the presence of sufficient magnitude and spatial 

structure in the variation. The observed variability in historical yield across both fields (Table 3) 

suggests that it may be viable to implement SSCM to maximise input efficiency.  Adding weight 

to this is the variability in average in-season NDVIs between potential management classes 

(Table 4) which indicate that there is also significant difference in current season yield potential 

(Raun et al. 2005). Using in-season NDVI in standard yield prediction algorithms has shown a 

correlation with final yield values (0.21–0.39) across both fields, supporting the findings of Raun 

et al. (2002) and Raun et al. (2005). The minimal yield response to applied fertiliser (Tables 4 and 

5) indicate that soil N levels were not a limiting factor on grain yield. Moisture stress is proposed 

as a major contributor to the small correlations between predicted and observed yields for the 

monitored season in this study as compared with previous studies (Berntsen et al. 2006; Lukina 

et al. 2001; Raun et al. 2001).  

 

A calibrated site-specific yield prediction function (YP0FARM), developed in an attempt to 

incorporate some local response information resulted in improved correlations at the whole field 

scale in both fields (0.39 to 0.43 in ‘Diamond’ and 0.22 to 0.24 in ‘Mugs’) compared to the standard 

prediction function currently in use on the farm (spring wheat rainfed S.AU). But given the 

expectation that moisture stress may play a role in the majority of seasons in Australia, a process 

to predict potential yield more accurately in-season may be improved by considering past 

production information in the estimation.  Modified yield prediction functions that incorporate either 

the standard or the site-specific calibrated yield prediction functions (Raun et al. 2002) and include 

previous season data layers and potential management classes were developed and compared. 

 

A modified prediction function created using the standard yield prediction function (spring wheat 

rainfed S.AU) coupled with soil and previous yield data provided improvements in yield 

predictions. Correlations with actual yields using a uniform function at the whole field scale 

increased from 0.39 to 0.40 and 0.22 to 0.49 in ‘Diamond’ and ‘Mugs’ respectively. These 

improvements are further enhanced via the prediction of yield using modified class-specific 

functions (Table 6). The modified class-specific functions further increased correlations in both 

fields (‘Diamond’ 2 classes = 0.44, 3 classes 0.43 and ‘Mugs’ = 2 classes 0.58, 3 classes = 0.66).  
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The site-specific modified functions further enhanced yield prediction ability. The correlation 

values for the uniform function at the whole field scale improved from 0.40 for the modified 

standard to 0.44 in Diamond. In Mugs, the uniform site-specific modified function did not greatly 

improve yield prediction. The modified class-specific functions resulted in increases in correlations 

over the uniform functions in both fields (‘Diamond’ 2 classes = 0.46, 3 classes = 0.48 and ‘Mugs’ 

2 classes = 0.58, 3 classes = 0.66) suggesting that the prediction of yield according to modified 

class-specific functions should be considered for in-season potential yield prediction in the future.  

 

It is evident that the improvement in predictions resulting from the introduction of historical 

production data is greater in ‘Mugs’ than ‘Diamond’. The best prediction functions for ‘Mugs’ were 

based on the inclusion of three previous seasons yield data and soil ECa data layers. In ‘Diamond’ 

the best prediction functions only contained one previous seasons yield data and soil ECa data. 

The availability of more historical data may have a bearing on this result. Previous studies 

undertaken by Raun et al. (2001) state that the inclusion of two previous seasons NDVI data 

improved predictions and explained 83% of variability in grain yield. Given an expected correlation 

between grain yield and NDVI (Berntsen et al. 2006; Lukina et al. 2001; Raun et al. 2001), the 

inclusion of at least two previous seasons yield data may be necessary to significantly improve 

the prediction of yield predictions. Further reseach into in-season yield prediction needs to 

incorporate both previous season NDVI and grain yield to test for further improvements. 

 

Using the simple stepwise regression process to determine the optimum modified functions 

resulted in the universal inclusion of soil ECa data. The spatial variability in soil ECa is strongly 

influenced by changes in soil texture and the effect on soil moisture holding capacity (Sudduth et 

al., 1996). The presence of soil ECa in each modified function suggests that soil texture and soil 

moisture are major factors influencing the variability in yield. In all of the modified functions (24 in 

total – data not shown), soil ECa measured over the profile depth or from the ‘subsoil’ was 

included as a significant predictive parameter. This is not unexpected as in dryland cereal 

production throughout Australia subsoil moisture provides a major contribution to crop water 

supplies (Kirkegaard et al. 2007). The inclusion of information relevant to subsoil moisture levels 

(such as soil ECa) into future modified prediction functions may allow an accurate minimum 

potential yield to be predicted and would provide producers with an estimate of expected yield 

without any further in-season rainfall. In addition, in-season yield prediction accuracy may 

increase with the inclusion of direct soil attributes, such as plant available water capacity (PAWC). 
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Improved accuracy of in-season yield prediction via modified site-specific functions also results in 

significant improvements in projected N input costs compared with pre-plant N application (data 

not shown). Widespread adoption of in-season crop reflectance sensors coupled with nitrogen 

fertiliser optimisation algorithms (NFOA) in Australia will be dependent on increased financial 

returns from improved N management. Financial analysis of in-season yield prediction 

demonstrates that across both fields in-season N application via the modified 3 class site-specific 

yield prediction functions in the cropping season monitored would have resulted in a saving of 

$1268 and $1790 in ‘Diamond’ and ‘Mugs’ respectively.  

 

For the monitored season the average saving per ha across both fields was $22 ha-1. If savings 

of this magnitude were attained across 1000 ha this would equate to a saving of $22,000 per 

season resulting in the capital expenses of the crop reflectance sensors being recovered in under 

one season. In addition to the direct savings seen from in-season N fertilisation there is the 

potential to minimise the loss of N to the environment by avoiding over-application. (Daigger et 

al. 1976; Chichester and Richardson, 1992; Raun and Johnson 1999). This aspect has less 

impact on management in Australia at present. 

 

The creation of modified class-specific yield prediction functions using historic production 

information has been shown in this preliminary study to improve the in-season prediction of 

variation in yield potential, especially in water-limited environments. Further exploration of the 

concept across a range of environments is warranted.  

Conclusions  
Variation in current season mean NDVI readings was identified between potential management 

classes derived from historic production information. This indicates that the use of NFOA in 

conjunction with in-season crop reflectance sensors may be enhanced by considering the 

construction of individual NFOA for identifiably different potential management classes. 

Improvement in correlations between predicted and harvested crop yield were obtained through 

the use of modified yield prediction functions in the NFOA. The inclusion of soil ECa data, and 

previous yield observations into the in-season yield prediction functions (YP 0) significantly 

enhanced yield prediction accuracy in these two fields. Calculating class-specific, modified yield 

prediction functions provided the greatest correlation between predicted and achieved crop yield. 

In-season application of N fertiliser in response to accurately predicted crop yield potential shows 

substantial financial benefit over the traditional method of applying N fertiliser pre-season in 

response to a target yield goal. 
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