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Abstract.  
 
Field size constrains spatial and temporal management of agriculture with implications for farm 
profitability, field biodiversity and environmental performance. Large, conventional equipment struggles 
to farm small, irregularly shaped fields efficiently. The study hypothesized that autonomous crop machines 
would make it possible to farm small non-rectangular fields profitably, thereby preserving field biodiversity 
and other environmental benefits. Using the experience of the Hands Free Hectare (HFH) demonstration 
project, this study developed algorithms to estimate field times (hr/ha) and field efficiency (%) subject to 
field size in grain-oil-seed farms of the United Kingdom using four different equipment sets. Results show 
that field size had a substantial impact on technical and economic performance of all equipment sets, but 
autonomous machines were able to farm small 1 ha non-rectangular (i.e., right-angled triangular) fields 
profitably. Small fields with equipment of all sizes and types required more time, but for HFH equipment 
sets (i.e., 28 kW conventional machine with human operator and 28 kW autonomous equipment set) field 
size had the least impact. HFH linear programming model solutions show that autonomous machines 
decreased wheat production cost by £21/ton to £40/ton for small non-rectangular fields, while 112 kW and 
221 kW equipment sets with human operators were not profitable for small fields. Technical and economic 
feasibility in small fields imply that autonomous machines could facilitate biodiversity and improve 
environmental performance. 
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Introduction 
 

   Field size has substantial consequences for environmental management (Clough et al., 2020; Konvicka et 
al., 2016; Marja et al., 2019), technical (Fedrizzi et al., 2019; Griffel et al., 2018; Griffel et al., 2020; Islam 
et al., 2017; Janulevičius et al., 2019; Luck et al., 2011) and economic feasibility (Batte and Ehsani, 2006; 
Carslaw, 1930; Larson et al., 2016; Miller et al., 1981; Sturrock et al., 1977). To facilitate conventional 
agricultural mechanization, comparatively large rectangular fields are needed and most of the land 
consolidation around the world in the last decades has been motivated by the desire for larger fields (Kienzle 
et al., 2013; Van den Berg et al. 2007). In the United Kingdom, field size has increased through removing 
hedgerows and in field trees to allow increasing use of larger machinery and ensure economics of size 
(MacDonald and Johnson, 2000; Pollard et al., 1974; Robinson and Sutherland, 2002). On the contrary, 
small fields are often neglected and considered as non-economic. For instance, in the United States many 
small irregular-shaped fields were abandoned in the 20th Century. The European Union and Switzerland 
retained small fields in production with subsidies (Lowenberg-DeBoer et al., 2021). Nevertheless, under 
the umbrella of landscape management, small fields are promoted by researchers. Research in Canada and 
the United States found increasing biodiversity in smaller fields (Fahrig et al., 2015; Flick et al., 2012; 
Lindsay et al., 2013). Likewise, studies in the United Kingdom and the European Union, also showed that 
small fields and more fragmented landscapes have higher biodiversity (Firbank et al., 2008; Gaba et al., 
2010; González-Estébanez et al., 2011). This study hypothesized that autonomous crop machines would 
make it possible to farm small non-rectangular fields profitably, thereby preserving and potentially 
enhancing the environmental benefits of farming landscapes with small non-rectangular fields. 
 

   Autonomous crop machines in this study refer to the mechatronic devices which have autonomy in 
operation usually through a predetermined field path. More specifically, the autonomous machines are 
mobile, having decision making capability, and accomplish arable farm operations (i.e., drilling, seeding, 
spraying fertilizer, fungicide and herbicide, and harvesting) under the supervision of humans, but without 
the involvement of direct human labour (Lowenberg-DeBoer et al., 2021, 2020). Autonomous machines 
are precision agriculture technology because they have the potential to cost effectively increase the 
precision of input applications and to collect very detailed data on agricultural production. The autonomous 
machines, demonstrated by the HFH project used swarm robotics concepts in which multiple smaller robots 
are used to accomplish farm work usually done by larger conventional machines with human operators. 
The autonomous swarm robotics of the HFH project are developed by retrofitting conventional machines 
(for details see Hands Free Hectare (HFH), 2021; Lowenberg-DeBoer et al., 2021).  
 

   Autonomous machines are considered as a game changing technology that could revolutionize precision 
agriculture (PA) and facilitate the 'fourth agricultural revolution' often labelled ‘Agriculture 4.0’ (Daum, 
2021; Klerkx and Rose, 2020; Lowenberg-DeBoer et al., 2021). Owing to population and economic growth, 
agricultural labour scarcity, technological advancement, increasing requirements of operational efficiency 
and productivity, and mitigating environmental footprint, autonomous machines are suggested as a 
sustainable intensification solution (Duckett et al., 2018; Future Farm, 2021; Guevara et al., 2020; Santos 
sand Kienzle, 2020). Robotic systems for intensive livestock and for protected environments have been 
commercialized more rapidly than for arable cropping.  Research on autonomous arable crop machines has 
mostly concentrated on the technical feasibility, not economics (Fountas et al., 2020; Shamshiri et al., 
2018). Understanding the economic implications of autonomous machines is key to their long-term 
adoption. Economic feasibility plays a crucial role in attracting investment, guiding adoption decisions, and 
further understanding of environmental and social benefits (Grieve et al., 2019; Lowenberg-DeBoer et al., 
2020).  
 

   Most production economic studies on autonomous crop machines prior to 2019 focused on horticultural 
crops or rarely on cereals using prototype testing and experimental data (Edan et al., 1992; Gaus et al., 
2017; McCorkle et al., 2016; Pedersen et al., 2017, 2008, 2006; Sørensen et al., 2005). Lack of information 
on economic parameters and machinery specifications has been a bottleneck in economic feasibility 
assessment because autonomous machines are at an early stage of the development and commercialization 
processes (Lowenberg-DeBoer et al., 2021; Shockley et al., 2021). Most of the earlier economic studies 
used partial budgeting, in which only the changes in cost and revenue linked to automation of a single field 
operation were analysed, omitting the economic consequences of farming systems changes resulting from 
use of autonomous machines (Lowenberg-DeBoer et al., 2020). To date, four studies have considered 
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systems analysis of autonomous machines (e.g., Al-Amin et al., 2021; Lowenberg-DeBoer et al. 2021; 
Shockley et al. 2019; C. G. Sørensen and Nielsen 2005).  
 

   Using a Linear Programming (LP) model with data from prototypes at the University of Kentucky, United 
States, Shockley et al. (2019) showed that relatively small autonomous machines are likely to have 
economic advantages for medium and small farms. The most comprehensive study so far was reported by 
Lowenberg-DeBoer et al. (2021). They assessed the economic feasibility of autonomous machies from 
seeding to harvesting operations using on-farm demonstration data and estimated equipment times based 
on methodology from the agricultural engineering textbook of Witney (1988). The study assumed 70% 
field efficiency from drilling to harvesting operations for both autonomous machines and conventional 
equipment sets with human operators. They showed that autonomous machines are technically and 
economically feasible for medium and small sized farms. The study concluded that autonomous machines 
diminished the rule of thumb of mechanized agriculture that is “get big or get out”. The study hypothesized 
that in the context of the United Kingdom, autonomous machines would be economically feasible in small 
fields. Nonetheless, the study was unable to test the hypothesis because of field efficiency estimates by field 
size and shape were not available.  
 

   To help fill this knowledge gap, the objective of the study is to assess the economics of field size for 
autonomous machines. Using the experience of the HFH demonstration project, the study developed 
algorithms to estimate equipment times and field efficiency for different sized non-rectangular (i.e., right-
angled triangular) fields. Historically in the United Kingdom, non-rectangular (i.e., triangular) fields were 
among the least efficient to farm (Carslaw, 1930; Sturrock et al., 1977). To analyse the economic scenarios, 
the study adopted and re-estimated the Hands Free Hectare-Linear Programming (HFH-LP) model 
(Lowenberg-DeBoer et al., 2021) by incorporating equipment times and field efficiency parameters 
estimated with field size algorithms. The HFH-LP model facilitated farm management and machinery 
selection decisions. A parallel study with preliminary results for rectangular fields of different sizes is 
available from Al Amin et al. (2021). 
 

Methods 
Field time and efficiency estimation subject to field size  
   To date the production economics studies on autonomous machines did not consider field size because of 
lack of data (Lowenberg-DeBoer et al., 2021; Shockley et al., 2019; Sørensen et al., 2005). Over time, the 
performance of arable field machinery has received growing attention for farm management and the ability 
to model field times has accelerated through the development of the technology and modelling approaches 
(Bochtis et al., 2010; Sørensen et al., 2005; Sørensen, 2003; Sørensen and Nielsen, 2005). Nonetheless, 
existing studies on arable crop machinery performance lack information of equipment times and field 
efficiency subject to field size.  
 

   Even though logistics software is well developed in trucking and other transportation sectors (Software 
Advice, 2021), there is no readily available commercial software in the United Kingdom to estimate 
equipment times and field efficiency encompassing fields and machines heterogeneity. In the farm 
equipment path planning research literature, field times were sometimes generated as a by-product 
(Hameed, 2014; Jensen et al., 2012; Oksanen and Visala, 2007; Spekken and de Bruin, 2013). The agri-
tech economic studies often rely on the general estimates of agricultural engineering textbooks like Hunt 
(2001) and Witney (1988). In conventional mechanization and PA literature, few studies estimated field 
efficiency, but prior studies treated the headlands of the field as non-productive areas, excluded overlap 
percentage, amalgamated productive field times (i.e., field passes, headlands turning, and headlands passes) 
and non-productive field times (i.e., replenish inputs, refuelling, and blockages), and ignored the headland 
turning patterns. Studies suggested that future research should separately calculate the headlands turning 
time, and stoppages time because productive times and non-productive times play a significant role in field 
efficiency estimation. Keeping these points in consideration, the study developed field time approximation 
algorithms by field size for 28 kW, 112 kW and 221 kW conventional equipment sets with human operators, 
and for the HFH sized 28 kW autonomous equipment set. The combine harvesters were assumed to have 
head widths of 2 m, 4.5 m and 7.5 m respectively. Using the experience of the HFH demonstration project, 
the algorithms addressed the research gaps identified from the prior studies. The study estimated field 
efficiency as the ratio of theoretical field time based on machine design specifications like the estimates of 
theoretical field time to its actual field productivity as follows: 
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𝐸! =	 [𝑇" 	/	(𝑇#$% +	T& 	+ 	T'()] 	∗ 	100		…  … (1) 

 
where, 𝐸! is the field efficiency, TT is the theoretical field time, 𝑇#$% is the total observed time in the interior 
field and passes, 𝑇) is the total headland round time, and 𝑇%! total stoppage time “within” in the field. 
Details of the algorithms are available on request from the first author.  
 

   The algorithms were calibrated for 1 ha, 10 ha, 20 ha, and 25 ha sized non-rectangular (i.e., right-angled 
triangular) fields assuming the height equalling twice the base. The study assumed that the equipment enters 
the field at the 90˚ angle corner and completes the headlands first for all field operations (i.e., drilling, 
spraying, and harvesting). Afterwards, the machine makes a “flat turn” to start the interior passes. 
Subsequently, follows the “flat turn” to complete the interior headland turns. Finally, the study assumed 
that the equipment ends on the entry side of the fields. as shown in Fig. 1. 
 
 

 
Fig. 2 Typical field path for non-rectangular (i.e., right-angled triangular) fields considered in the study 
based on the HFH demonstration project experience. 
 

Modelling the economics of field size  
   To understand the whole farm effects of field size with different types of farm equipment, the study 
adopted and re-estimated the Hands Free Hectare - Linear Programming (HFH-LP) model (for details see 
Lowenberg-DeBoer et al., 2021). The HFH-LP model is a decision-making tool which assesses the 
economics of autonomous machines compared to conventional equipment sets with human operators. 
Consistent with typical neoclassical microeconomic farm theory, the objective function of the HFH-LP 
model was to maximize gross margin (i.e., return over variable costs) subject to primary farm resource 
constraints in the short-run. In the subsequent stages, using the outcome of the HFH-LP model, the study 
examined net return to operator labour, management and risk taking and evaluated the wheat cost of 
production to explore the cost economies (i.e., economies of size) (Debertin, 2012; Duffy, 2009; Hallam, 
2017; Miller et al., 1981). The HFH-LP model is a one-year “steady state” model for arable grain-oil-seed 
farm, where the model assumes a monthly time step from January to December. It is steady state in the 
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sense that it is assumed that solutions would be repeated annually long term. The concept of “steady state” 
was carried over from the Orinoquia model (for details see Fontanilla-Díaz et al., 2021) which used the 
same software. Following Boehlje and Eidman (1984), the HFH-LP deterministic economic model can be 
expressed as:  
 
   The objective function: 

𝑀𝑎𝑥	𝜋 =3𝑐*

+

*,-

𝑋* 																																																														…… (2) 

   Subject to: 

3𝑎.*

+

*,-

𝑋* 	≤ 	 𝑏. 	𝑓𝑜𝑟	𝑖 = 1,…	… ,𝑚;																															…	… (3) 

𝑋* ≥ 0	𝑓𝑜𝑟	𝑗 = 1,…	… , 𝑛;																																															…	… (4) 
where, π is the gross margin, 𝑋* is the level of jth production activities, 𝑐* is the gross margin per unit over 
fix farm resources (𝑏.) for the jth production activities, 𝑎.* 	is the amount of ith resource required per unit 
of jth activities, 𝑏. is the amount of available ith resource.  
 

   The constraints of the HFH-LP model encompassed land, human labour, equipment times (i.e., tractor 
use time for drilling and spraying, and combine use time for harvesting), and cashflow. The initial HFH-
LP scenarios encompassed four farm sizes: 66 ha, 159 ha, 284 ha and 500 ha farms, but did not model field 
size. This study re-estimated the human labour and equipment times assuming non-rectangular large fields 
(10 ha) or small fields (1 ha). The 10 ha size was selected for the large fields, because the field efficiency 
algorithm estimates showed that over 10 ha, field efficiency does not vary much by field size. A 1 ha field 
size was selected to represent small fields, because relatively few fields in the United Kingdom are smaller 
than 1 ha. The triangular shape was selected as this is among the least efficient (Carslaw, 1930). For details 
of the land, human labour, cash flow constraints, field operation and equipment time by crop month and 
equipment sets at optimum yields, and the programming code see Lowenberg-DeBoer et al. (2021). The 
HFH-LP model was coded in the General Algebraic Modelling System (GAMS) (https://www.gams.com/).  
 
 

Case study and data sources 
   The study was conducted based on the experience of the HFH project at Harper Adams University, 
Newport, Shropshire, United Kingdom. The HFH-LP model represented an arable grain-oil-seed farm in 
the West Midlands of the United Kingdom. To calibrate the HFH-LP model, the study used parameters 
from different sources. The information about commodity produced and the costs estimates were from the 
Agricultural Budgeting and Costing Book (Agro Business Consultants, 2018) and the Nix Pocketbook 
(Redman, 2018). Details of the machine inventory, costs of machines, hardware and software, crop rotations 
and key baseline assumptions are available at Lowenberg-DeBoer et al. (2021). Field operation timing was 
adopted from Finchet al. (2014) and Outsider’s Guide (1999).  
 

   Equipment timeliness (i.e., HFH 28 kW conventional equipment set with human operator and autonomous 
machines, 112 kW and 221 kW conventional equipment sets with human operators) were estimated through 
the developed algorithms, where the equipment and field specifications were collected from HFH 
demonstration experience (https://www.handsfreehectare.com/), conventional machine specifications from 
John Deere (https://www.deere.co.uk/en/index.html), and Arslan et al. (2014) and Lowenberg-DeBoer et 
al. (2021). Details of the technical parameters used and data sources are available on request from the first 
author at abdullah.alamin@live.harper.ac.uk.  
 
 

Results 
 

Effects field size on field efficiency and times  
   The study evaluated the technical feasibility of the HFH 28 kW conventional equipment with human 
operator and autonomous machines, and 112 kW and 221 kW conventional equipment sets with human 
operators for all field operations including direct drilling, five spraying applications of liquid fertilizer, 
fungicide and herbicide, and harvesting operation. The average whole farm field efficiency for non-
rectangular fields differed substantially between 1 ha and 10 ha fields, but for a given equipment set the 
average whole farm field efficiency was almost the same for 20 ha and 25 ha fields (Fig. 2). The technical 
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feasibility (i.e., field times and field efficiency) results show that HFH 28 kW equipment sets were more 
technically feasible for all sized non-rectangular fields even in small 1 ha fields, whereas conventional 221 
kW and 112 kW equipment set with human operators were less efficient in non-rectangular fields.  
 
 

 
Fig. 2 Estimated (weighted average) whole farm field efficiency of HFH equipment (i.e., 28 kW 
conventional equipment with human operators and autonomous machine), large conventional and small 
conventional technology with human operators in different sized non-rectangular fields.  
 
 

   The equipment times were longer for all operations in small 1 ha fields equipped with equipment of all 
sizes and types, but field sizes had least impact for the HFH equipment sets (Table 1). The higher time for 
small 1 ha fields was largely due to the fact that the full width of the larger equipment could not be used 
effectively in the smaller fields. Drilling operations required the highest equipment times and subsequently 
followed by harvesting and spraying in case of HFH 28 kW equipment sets, whereas for conventional 
equipment sets with human operators (i.e., 221 kW and 112 kW) irrespective of field sizes, harvesting 
consumed more time, afterwards, drilling and spraying. Small 1 ha non-rectangular fields required more 
time for field operations due to the varying interior length of the passes, higher interior headlands turning 
time. The comparatively lower times for spraying compared to drilling and harvesting operations was 
associated with the field and equipment specifications of the sprayer because the sprayers were the widest 
implement. This also resulted in the lower field efficiency for spraying small fields. 
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Table 1 Equipment times of the machinery sets for non-rectangular fields of 1 ha and 10 ha 
Equipment Width of the 

implement (m)** 
Overlap 

percentage ** 
Field speed 
(km/hr)** 

Field Efficiency 
(%)*** 

hr/ha 

1 ha Non-rectangular Field    
HFF equipment set (28 kW)*:    
Drill 1.5 10% 3.25 47% 4.85 
Sprayer 7 10% 5 44% 0.72 
Combine 2 10% 3.25 45% 3.80 
Larger conventional set (221 kW):   
Drill 6 10% 5 20% 1.85 
Sprayer 36 10% 10 16% 0.19 
Combine 7.5 10% 3 19% 2.60 
Small conventional set (112 kW):    
Drill 3 10% 5 27% 2.74 
Sprayer 24 10% 10 22% 0.21 
Combine 4.5 10% 3 24% 3.43 
10 ha Non-rectangular Field    
HFF equipment set (28 kW)*:    
Drill 1.5 10% 3.25 70% 3.26 
Sprayer 7 10% 5 66% 0.48 
Combine 2 10% 3.25 71% 2.41 
Larger conventional set (221 kW):   
Drill 6 10% 5 43% 0.86 
Sprayer 36 10% 10 36% 0.09 
Combine 7.5 10% 3 41% 1.20 
Small conventional set (112 kW):    
Drill 3 10% 5 54% 1.37 
Sprayer 24 10% 10 46% 0.10 
Combine 4.5 10% 3 48% 1.71 

Note: * HFH equipment sets are28 kW conventional machines with human operators and 28 kW autonomous machines. **The 
machine specifications and overlap assumptions were collected from the HFH experience and Lowenberg-DeBoer et al. (2021). 
*** The authors developed algorithms to estimate the field efficiency of non-rectangular fields (details of the estimation procedures 
and algorithms are available on request from the first author at abdullah.alamin@live.harper.ac.uk). 
 
 
 
 

Economic implications of field size on machinery use  
   HFH-LP solutions for the farm size, field size and equipment set scenarios for non-rectangular fields are 
presented in Table 2. The identical gross margin for 66 ha farms with 10 ha sized non-rectangular fields is 
because the smallest farms did not face any operator and labour time constraints, therefore they planted, 
maintained and harvested the wheat-OSR rotation at optimal times. On the contrary, gross margins for 66 
ha farm with 1 ha non-rectangular fields were higher for autonomous machines and larger conventional 
equipment compared to 28 kW and 112 kW conventional equipment sets because these two conventional 
sets faced operator time constraints and required more hired labour for farm operations.  
 

   Economic scenarios of non-rectangular fields incorporating fixed costs show that net returns to operator 
labour, management, and risk taking were higher for autonomous machines irrespective of field sizes, 
except for the smallest 66 ha farm in the West Midlands equipped with 28 kW conventional machine with 
human operator. This is because the autonomous machines required extra cost for retrofitting equipment 
for autonomy. The higher net return to operator labour, management and risk taking for the conventional 
66 ha farm may be an illusion because of the higher labour requirement. For the 66 ha farm with 10 ha 
fields, no labour is hired in either conventional or autonomous scenarios, but the conventional farm requires 
3 times more operator labour time than the autonomous farm. For the 66 ha farm with 1 ha fields, the 
conventional farm requires 3 times more operator labour, plus 16 days more hired labour. A small 
conventional 28 kW equipment set is not the sustainable solution given the growing labour scarcity in arable 
farming in the United Kingdom. 
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Table 2 HFH-LP outcomes on the economic viability of technology choice subject to different sized non-
rectangular fields.  
 

Scenario* Arable 
area 

(ha)** 

Field 
size 
(ha) 

Labour 
hired in 
the farm 

(days 
per 

annum) 

Operator 
time 

required in 
the farm 
(days per 
annum) 

Whole 
farm 
gross 

margin 
(£ per 

annum) 

Return to 
operator 
labour, 

management 
and risk taking 
(£ per annum) 

Wheat cost of 
production 

with allocated 
operator 

labour (£ per 
ton) 

Conv. 28 kW 59.4 10 0 80 47048 15848 169 
Conv. 28 kW 59.4 1 16 106 45817 14617 188 
Conv. 28 kW2 143.1 10 71 121 107796 36381 151 
Conv. 28 kW2 143.1 1 144 149 98792 27377 168 
Conv. 28 kW3 255.6 10 195 147 187200 64886 140 
Conv. 28 kW4 255.6 1 355 169 174736 43259 153 
Conv. 28 kW4 450.0 10 415 188 301867 98268 141 
Conv. 28 kW7*** 450.0 1 743 180 298465 67379 145 
Autonomous 28 kW 59.4 10 0 24 47048 12301 139 
Autonomous 28 kW 59.4 1 0 38 47048 12301 148 
Autonomous 28 kW 143.1 10 3 55 113076 47276 125 
Autonomous 28 kW2 143.1 1 31 60 110943 32433 137 
Autonomous 28 kW2 255.6 10 41 63 199274 79027 122 
Autonomous 28 kW3 255.6 1 90 72 195464 62507 130 
Autonomous 28 kW3 450.0 10 105 77 348225 143146 118 
Autonomous 28 kW4 450.0 1 191 94 341516 123728 124 

 

Conv. 112 kW 59.4 10 0 40 47048 -26001 220 
Conv. 112 kW 59.4 1 3 76 46539 -26510 246 
Conv. 112 kW 143.1 10 17 78 112004 7903 161 
Conv. 112 kW2 143.1 1 93 99 106052 -49061 211 
Conv. 112 kW 255.6 10 74 96 196659 50820 139 
Conv. 112 kW2 255.6 1 231 112 184397 -12453 168 
Conv. 112 kW2 450.0 10 193 107 341365 72393 138 
Conv. 112 kW4*** 450.0 1 470 135 319779 -51216 170 

Conv. 221 kW 59.4 10 0 28 47048 -70973 296 
Conv. 221 kW 59.4 1 0 60 47048 -70973 317 
Conv. 221 kW 143.1 10 0 67 113343 -35731 192 
Conv. 221 kW 143.1 1 49 96 109520 -39554 202 
Conv. 221 kW 255.6 10 33 87 199900 9089 155 
Conv. 221 kW2 255.6 1 149 109 190802 -95993 204 
Conv. 221 kW2 450.0 10 106 105 348122 -10796 158 
Conv. 221 kW3*** 450.0 1 325 130 331055 -123847 188 

Note: *The superscript with equipment specification under scenario indicates the number of equipment sets. **Based on the 
experience of HFH demonstration project, the study assumed that the arable crop farm was 90% tillable, where remaining 10% 
were occupied for ecologically focused area such as, lanes, hedgerows, drainage ditches, farmstead, etc. ***The study baseline 
scenarios assumed a maximum of 100 person-days/month of temporary labour available, but in the sensitivity testing that was 
raised to 200 person-days/month.  
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   The wheat cost of production curves with non-rectangular fields shows that irrespective of field sizes, 
farms with autonomous machines had cost advantages (i.e., lower cost of production) and reduced 
economies of size compared to farms with conventional equipment sets with human operators (Fig. 3). 
More specifically, the autonomous cost curves scenarios reveal that small 1 ha non-rectangular fields 
required higher wheat cost of production compared to 10 ha fields, which are associated with comparatively 
higher hired labour, operator time and equipment scenarios. The equipment scenarios show that small non-
rectangular fields required more autonomous equipment sets to optimally operate the same farm, except for 
the smallest farm. Likewise, for conventional equipment sets, small 1 ha fields had substantially higher 
wheat production costs compared to 10 ha fields. For larger 500 ha farms equipped with conventional sets, 
the minimum unit cost of production was achieved with seven-units of 28 kW equipment set for 1 ha fields, 
whereas 10 ha fields had minimum unit cost scenarios with two units of 112 kW equipment set. The wheat 
cost scenarios by equipment set shows that autonomous machines reduced wheat cost of production by 
£21/ton to £40/ton in small 1 ha non-rectangular fields, indicating that autonomous equipment has cost 
advantages (i.e., lower cost of production) and reduced economies of size compared to conventional 
equipment sets with human operators.  

 
Fig. 3 Wheat unit cost of production in pounds per ton for farms with non-rectangular fields of 
different sized farms. The labels on the data points for 1 ha and 10 ha fields are the size of the 
tractor used and the number of equipment sets. The curves without labels are the baseline analysis 
which was done without field size and shape modelling.   
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Discussion 
 

   The scenarios analysed show that for a given farm size and machinery use, gross margin and net return 
to operator labour, management and risk taking were similar irrespective of field size, whereas net returns 
differed more by equipment set than field size. Further investigation of the economies of size, with a 
reference to field size, contributes to the cost economies literature as prior production economies studies 
missed out the implications of non-rectangular fields for autonomous machinery (Al-Amin et al., 2021). 
Assuming a 2018 wage rate to allow comparison to the baseline study by Lowenberg-DeBoer et al. (2021), 
the study shows that autonomous machines had lower wheat production cost and reduced economies of size 
compared to conventional equipment sets with human operators irrespective of field size.  
 

   The results support the hypothesis of the study that autonomous machines offer the possibility of farming 
small non-rectangular fields profitably, implying the potentials of biodiversity enhancement and 
environmental performance of such small fields as a side effect (Fahrig et al., 2015; Firbank et al., 2008; 
Konvicka et al., 2016). This suggests that autonomous arable crop farms could support the United 
Kingdom’s agricultural transition plan for sustainable farming, as the economic feasibility of small 
autonomous farms favours the recent government initiative of the Environmental Land Management 
Schemes (ELMS) which is grounded on three fundamental components of sustainable farming incentive, 
local nature recovery and landscape recovery (DEFRA, 2020; DEFRA, 2021). Likewise, the study supports 
agri-environment schemes (AES) which encourage small fields for biodiversity in the European Union and 
elsewhere (Geppert et al., 2020).  
 

   The findings of the study also provide guidelines to farmers, agribusinesses, technology developers, and 
policymakers. More specifically, the study guides “farm size policy” generally associated with 
“agricultural mechanization policy” and “biodiversity conservation policy” of large (i.e., Brazil, 
Argentina, United States, Australia, and Mexico) and medium (i.e., United Kingdom and Europe) scale 
farming systems in developing policies considering environmental performance in arable farming. 
Conventional mechanization with human operators encourages field enlargement and farm size growth, but 
the profitability of autonomous farms with small non-rectangular fields irrespective of field size indicates 
that the pressure to “get big or get out” and remake rural landscapes will be reduced with autonomous 
machines.  
 

   However, despite having significant contributions in PA, farm management, agri-tech economics, and 
environmental management literature, the study had some limitations in the development of algorithms and 
existing economic modelling scenarios. Because of lack of data, the algorithms assumed zero down time 
due to machine problems (e.g., seed tines blocked with crop residue, plugged sprayer nozzles, damp straw 
wrapping a combine harvester drum). Hands Free Hectare (HFH) was a demonstration project, so it was 
difficult to separate stops for research purposes and those that would have occurred on any farm. Future 
research could reinvestigate this assumption based on farm experience. In terms of technical and economic 
modelling scenarios, the study only considered four equipment sets. There may be other equipment sizes 
that may better fit the given circumstances, especially for small 1 ha non-rectangular fields. In addition to 
the large and medium scale economies, considering the context of small scale economics (i.e., Asia and 
Africa), future research could incorporate various field sizes of less than 10 ha, even less than 1 ha as the 
small scale economies are subsistence and uneconomical with tiny fragmented arable lands on farms of less 
than 2 ha, where autonomous machines may be technically and economically profitable solution with their 
existing labour scarcity, especially in peak production seasons (Al Amin and Lowenberg-DeBoer, 2021; 
High Level Panel of Experts (HLPE) 2013; Lowder et al., 2016). Even though, the technical and economic 
feasibility of autonomous machines in small non-rectangular fields reveal the environmental management 
potentials, for further understanding of the on-field scenarios of field biodiversity impacts on machinery 
use, future research may incorporate field inclusions, such as in field trees and wetlands, to examine the 
economic implications of biodiversity enhancement. These inclusions may address field topography issues 
like grass waterways (Batte and Ehsani, 2006) and/or encourage non-crop habitat within the field or around 
the field alike aboveground environmental diversification (Bellon-Maurel and Huyghe 2017; Boeraeve et 
al., 2020; Tamburini et al., 2020). Last but not least, future endeavours may consider the economic 
implications of autonomous machines on mitigation of environmental degradation. 
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Conclusions 
 

   Considering the field biodiversity and environmental performance potentials of small fields, the study 
hypothesized that autonomous crop machines would make it possible to farm small non-rectangular fields 
profitably. To test the hypothesis, the study developed algorithms to estimate field efficiency (%) and 
equipment times (hr/ha) for different sized non-rectangular (i.e., right angled triangular) fields. The 
technical feasibility analysis on non-rectangular fields shows that HFH 28 kW conventional equipment set 
with human operator and autonomous machines (i.e., autonomous swarm robotics) had comparatively 
higher field efficiency irrespective of field size, compared to the conventional equipment sets with human 
operators (i.e., 221 kW and 112 kW). Economic scenarios (i.e., return over variable costs and net return to 
operator labour, management, and risk taking) examined through mathematical programming (i.e., HFH-
LP model) show that autonomous machines were a profitable solution for arable farms with small fields 
considering the scarcity of agricultural labour, and given the substantial amount of hired labour and operator 
time required by the conventional equipment sets with human operators. The wheat production cost curves 
comparison show that autonomous machines reduced cost of production by £21/ton to £40/ton for small 
non-rectangular fields. The ability of autonomous crop machines to profitably farm small non-rectangular 
fields make them potentially useful in achieving the goals of the Environmental land management schemes 
in the United Kingdom and agri-environment schemes in the European Union and elsewhere. 
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