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Abstract 

The determination of plant nutrient content is crucial for evaluating crop nutrient removal, 
enhancing nutrient use efficiency, and optimizing yields. Nutrient conventional monitoring 
involves colorimetric analyses in the laboratory; however, this approach is labor-intensive, 
costly, and time consuming. The visible and near-infrared spectroscopy (VNIR) or 
hyperspectral non-imaging sensors have been an emerging technology that has been proved 
its potential for rapid detection of plant nutrient deficiency and nutrient status monitoring. 
However, most studies in this respect have focused primarily on nitrogen and few research 
were conducted to understand the specificity of measuring phosphorus using this technique. 
In this study we investigated the potential of leaf spectral reflectance in the visible and near 
infrared spectral region to predict phosphorus (P) status in winter wheat leaves. The research 
was conducted in a long-term experiment, which installed in 1896 at the Gembloux Agro-Bio 
Tech faculty. The trial includes various fertilization modalities ensuring phosphorus contrast 
and variability in data acquired. The spectra acquisition and leaves biomass sampling were 
done synchronously at different stages of wheat growth cycle. The reflectance measurements 
were done on the two youngest fully expanded leaves using the ASD FieldSpec4 
spectroradiometer. The recorded spectra, between 350 nm and 2 500 nm at a 1 nm interval, 
were corrected for light scattering using multiple scatter correction (MSC). Results from partial 
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least squares regression (PLSR) with leave-one-out cross-validation (LOOCV) and 4 latent 
variables provided a root mean square error (RMSEcv) and a determination coefficient (R2cv) 
at respectively 0.94 mg/g and 0.71. The obtained model predicted leaf phosphorus status with 
a ratio of standard deviation to RMSEcv (RPDcv) of 1.9. The cross-validation results showed 
that the developed PLS predictive model has some potential to detect P status in wheat fresh 
leaves by identifying 2 classes of P and that using Vis-NIR spectroscopy is a practical option 
to measure leaf phosphorus concentrations.  
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Introduction  
Visible and near-infrared (VNIR) spectroscopy or hyperspectral non-imaging sensors have 
been an emerging technology that has been proved its potential for nutrient status detection in 
precision agriculture (Prananto et al., 2020). This technique relies on the change that nutrient 
stress can cause in the spectral reflectance characteristics of leaves and canopies indirectly 
by disturbing the photosynthetic pigments production such as chlorophyll and anthocyanin 
(Neuner and Larcher, 1990; Siedliska et al., 2021). This correlation allows a non-destructive 
and rapid assessment of nutrient status in the field. In contrast to stressed plants, which have 
a lower reflectance in the NIR, healthy crops tend to reflect a bit in the red and a lot in the NIR 
(Ge et al., 2019). This approach was adopted to assess nutrient crop status namely nitrogen 
because it is strongly correlated to the chlorophyll content that mainly affects leaf reflectance 
in the visible range (Wang et al., 2014). Unlike nitrogen deficiency, phosphorus starvation does 
not develop leaf chlorosis but it increases the number of smaller cells per unit leaf area which 
causes modifications in the spectral reflectance (Mahajan et al., 2014).  
Several studies have been focusing on determining the appropriate wavelengths or 
combination of wavelengths for phosphorus (P) leaves and canopy sensing. Among several 
investigated vegetation indexes (VIs), Kawamura et al.,( 2011) found that the NDSI, based on 
523 nm and 583 nm, had the best potential to predict pasture P content (R2=0.78). However, 
(Ansari et al., 2016) used the entire visible region of the spectrum to sense P in wheat during 
all growth stages. Similarly, (Mahajan et al., 2014) proposed a new VI that involves 1080 nm 
and 1460 nm wavelengths and predict P content in wheat with a significant accuracy and a 
correlation coefficient equal to 0.42. In the VNIR region, eight effective wavelengths were 
selected to predict P content in oilseed rape leaves with a high accuracy (r=0.71) (Zhang et 
al., 2013). Using the same region of the spectrum, (Osborne et al., 2004) found the best 
prediction of P in corn plants using reflectance in the blue region (440 and 445 nm) and NIR 
region (730 and 930 nm). The short-wave infrared domain has been also a subject of plant P 
prediction studies. For this purpose, Pimstein et al., (2011) suggested a vegetation index of 
two bands (1645 nm and 1715 nm wavelengths). The previous studies related to plant P 
determination used the average of different scans taken form two or three youngest leaves as 
a representative measurement (Ge et al., 2019). Others took measurements on the fully 
expanded youngest leaf (Li et al., 2006; Mahajan et al., 2014).  
Despite of the several conducted studies to understand phosphorus selectivity, the obtained 
results were typically moderate and highly variable (Mapare et al., 2013). Therefore, further 
researches are needed to develop phosphorus remote sensing and to understand the 
specificity of measuring phosphorus content of wheat leaves using spectroscopy in order to 
enhance nutrients use efficiency and crop productivity. The objective of this study is to evaluate 
the effect of the resulting contrast of long-term fertilization modalities on wheat leaves and 
canopy’s reflectance using the VNIR-SWIR spectroscopy for a rapid detection of P deficiency.  

 

Material and methods  
Experimental site and design 

The experimental site is a long-term trial located at Gembloux Agro Bio-Tech, University of 
Liège, Belgium (Figure 1). This trial has been installed in 1896 with an objective to study for 
the long term the effect of nitrogen, phosphate, and potassium on field crop yields. The 
experiment was based on the law of minimum established by Liebig in 1850, which consider 
that plant growth and yield is limited by the element in shortest supply.  
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Figure 1. Photos of the region of interest with the five fertilization modalities. 

The long-term trial is located in Gembloux, Belgium (50.564121, 4.698802). The trial is two 
sets of five plots; each plot occupies a 60m2 area divided to 5 micro-plots with 6m length and 
2m width (Figure 1). Each plot represents a different fertilization modality as it is shown in the 
figure. In our study, two lines of micro-plots were eliminated to avoid the border effect. Five 
different fertilization modalities were studied, NPK symbolizes the fertilization modality with the 
supply of the three 3 macronutrients (nitrogen, phosphorus, and potassium), PK is the 
phospho-potassium fertilization, NK is the nitrogen and potassium fertilization, NP represents 
the nitrogen and phosphorus fertilization, and 0 treatment is where no supply of the three 
macronutrients has been applied. The nutrient supplies are done at the Z21 stage according 
to Zadok scale for phosphorus, potassium, and the first fraction of the total amount of nitrogen, 
while the second and the third fractions were applied at Z30 and Z50 stages, respectively. The 
trial was supplied with the optimal rates of the essential nutrients K at 160 Kg/ha, P at 120 
Kg/ha, and N at 150 Kg/ha using the ammonium nitrate, triple superphosphate and potassium 
chloride fertilizers.  

Measurement of hyperspectral reflectance 

The spectra acquisition was done weekly starting from flowering to maturity stages using the 
ASD FieldSpec4 spectroradiometer (Malvern Panalytical Ltd., Formerly Analytical Spectral 
Devices). The spectral range of the instrument is 350–2500 nm and the spectral sampling 
interval is 1 nm. Each raw spectrum therefore has 2151 data points. The acquisitions were 
taken between 10h00 and 15h00 at the leaf level using the contact probe of the 
spectroradiometer. Five plant per micro-plot were chosen randomly for the measurements and 
for each plant the reflectance of two fully expanded youngest leaves were recorded (the first 
and the second leaf from the top). For each leaf, one measurement was taken at the largest 
section. Acquisitions were done weekly between flowering and maturity stages, during six 
weeks. 
 
Biomass sampling and chemical analysis  

Biomass samples were collected using a 50 x 75 cm quadrat comprising 6 lines. The samples 
were taken at three development stages 69, 77, and 89 according to Zadocks scale (Zadocks 
et al., 1974). After the sampling work, the wheat plants were separated to leaves, stems, and 
ears and weighed to obtain the fresh weight of the samples. The wheat samples were then 
dried to achieve constant mass and weighed to record the dry weight. Nitrogen concentration, 
phosphorus concentration and other major elements concentration (K, Mg, Ca, Na) were 
determined on the same samples. 
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Spectra preprocessing and analysis 

To remove the light scattering effect from the raw data, the MSC was applied using the 
“prospectr” package (Stevens and Ramirez-Lopez, 2015). It consists of eliminating additive 
noise and multiplicative noise through the separation of physical light scattering effects and 
chemical light effects in spectra (Martens and Stark, 1991). The MSC processing technique 
corrects each spectrum by dividing it by its slope and subtracting its intercept; the slope and 
the intercept are calculated by regressing each spectrum against the average spectrum 
(Geladi et al., 1985). 
  
Before conducting the multiple regression, the water’s influences on the measured spectra 
were removed by eliminating the water absorption bands (Figure 2.c). In fresh plant leaves, 
water absorbs energy in the SWIR region particularly near 1450 and 1900 nm bands 
(Peñuelas and Filella, 1998). Therefore, the wavelength ranges from 1350nm to 1550 nm and 
from 1800 nm to 2000 nm have been excluded from the spectral analysis. In addition, the 
wavelengths beyond the range of 400–2400 nm were also removed. 
  
The number of samples for each value of phosphorus is presented in Figure 2.d. The leaves 
phosphorus content of the 60 collected samples covers all the range from 0.6 to 6.4 mg.g-1. 
These values were used as reference measurements to establish phosphorus prediction 
model using partial least square regression from PLS package. Due to the moderate number 
of phosphorus samples, leave-one-out cross validation was adopted to train and validate our 
predictive model.  After establishing the model, we proceeded to wavelength selection via 
variable importance.  

 
Figure 2. Raw data preprocessing workflow: raw data (a), multiple scatter corrected spectra (b), water bands retrieval (c), and 

reference measurement distribution (d) 
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Results  
 
Averaging the spectra 

Figure 3 shows the average reflectance spectra of different fertilization modalities (PK, NPK, 
None, NP, and NK) from the raw data and after the scatter correction (MSC) for the first leaf. 
Comparing the average corrected spectra of the NPK modality (presence of phosphorus) and 
the NK modality (absence of phosphorus) shows that decreasing phosphorus increases 
reflectance in the range between 800 and 1000 nm and decreases reflectance near the 1700 
and 2300 nm bands (Figure 3.B). 
 
 

 
Figure 3. The average spectra of leaf samples from different fertilization modalities of raw spectra (A) and the MSC corrected 

spectra (B). 

PLS-based prediction models  

The 1603 remaining wavelengths after water bands and noise retrievals, were used to perform 
a partial least square regression for each leaf apart. For the two models the optimum number 
of latent variables was determined by minimizing the mean square error (RMSE). Using the 
raw data, the first variable latent explains 29.56 and 40.64% of the variation of phosphorus 
content in the first and second leaf, respectively. After applying the scatter correction and water 
band removal, this percentage increases to 61.48 for the first leaf and to 59.64% for the second 
leaf. For the first four variable latent, the highest percentage was recorded for the preprocessed 
spectra of the 2nd leaf of measurements with a percentage of 77.57%, see Table 1.  
 
Table 1. The variance of latent variables in raw data PLS model and preprocessed spectra PLS model 
for each leaf. 
 
Latent variable 
number  

Raw data  Preprocessed spectra 
1st leaf  2nd leaf  1st leaf  2nd leaf  

1  29.56 40.64 61.48 59.64 
2  45.61 65.92 63.30 69.70 
3 70.42 69.87 69.27 72.81 
4 74.36 75.99 74.20 77.57 

 
 
 
 



Proceedings of the 15th International Conference on Precision Agriculture 
June 28 – July 1, 2020, Minneapolis, Minnesota, United States page 7 
 
 

Effect of leaf number on the model accuracy 

For the both PLS-based prediction models, the accuracy was assessed by calculating root 
mean square error for cross-validation (RMSEcv), coefficient of determination (R2), and the 
ratio of standard deviation to RMSEcv (RPDcv) for cross-validation (RMSE cv), The results 
are presented in Figure 4. This shows the observed versus predicted values of leaves 
phosphorus concentration (mg/g) from the final PLS leave-one-out cross-validation for the first 
leaf (A) and the second leaf of measurement (B). The 2nd leaf-based prediction model 
outperformed the first model in terms of accuracy. The coefficient of determination and RPD 
for the 2nd leaf-based model were around 0.71 and 1.9, respectively. Furthermore, the RMSEcv 
was also slightly inferior to those of the 1st leaf-based model. 

 
 
Figure 4. The observed versus predicted values from the final PLS leave-one-out (loocv) cross-validation procedure for leaves 
phosphorus concentration (mg/g), for the first leaf (A) and the second leaf (B) of measurement.  
 
Variable importance  

The effective wavelengths of the spectral data were selected using the variable importance in 
projection (VIP) scores from the PLS with the full spectrum. The VIP values for all variables 
and for the four latent variables are displayed in Figure 5. The four latent variables explain the 
same regions of the spectra, particularly in the visible region. The third and the fourth latent 
variables are responsible for explaining small additional variability in the region around 1500 
nm. The zoom on the visible and the NIR regions of the importance plot shows two distinct 
peaks, the first is around 560 nm and the second at 720 nm.  
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Figure 5. Variable importance plot for the first four latent variables of the second leaf PLS model over the full spectrum (A) and 
only the visible NIR regions (B) 
 
 

Discussion  
 
In this study, we investigated two different prediction models based on the full spectral region 
of two different leaves. The two PLS-based models predicted leaves phosphorus moderately 
and the models have some potential to be improved (R2=0.67 and R2=0.71 for the first and the 
second leaf respectively) The second PLS model had higher coefficient of determination and 
ratio of performance to deviation (RPD>2.0) and lower root mean square errors than the first 
leaf prediction model, but differences were small. (Rossel et al., 2007) used R2 and RPD to 
distinguish different classes of models. R2 between 0.65 and 0.80 and RPD between 1.8 and 
2.0 indicates good models and predictions	 where  the model can produce quantitative 
predictions,  
The effect of the leaf number on the quality of prediction of nitrogen using reflectance was 
studied by (Röll et al., 2019), no significant difference was reported between the two youngest 
leaves while predicting N content using spectral vegetation indices. When taking spectral 
measurements on the youngest fully developed leaf, (Li et al., 2006) found no influence of P 
leaf content between control and P-deprived bailey plants. The authors recommend that 
spectral analysis be performed on older mature leaves since P is mobile and can be 
reabsorbed from older organs to young leaves. This prevents the young leaves from entering 
P-stressed state. 
Our results showed that the VNIR spectral region was the most related to leaves phosphorus 
content and the most sensitive bands were around 560 nm and 720 nm, which can be related 
to the anthocyanin absorption bands and to the red-edge respectively. Salisbury and Ross, 
(1992) reported that the resulted purple coloration in phosphorus deficient leaf margins is 
caused by the absorption of green lights (500-600 nm) and the reflection in the red and blue 
regions of the spectrum. Using hyperspectral reflectance data, (Li et al., 2018) demonstrated 
that the red-edge bands (680–760 nm) can be utilized to accurately estimate leaf phosphorus 
content (R2val = 0.75, RPDval = 2.01), which is similar to our findings. On the other hand, a low 
prediction accuracy for P using the full spectral range was found by (Ge et al., 2019) with R2 < 
0.5 and RPD < 1.4. Özyiğit and Bilgen, (2013) obtained a low coefficient of determination 
(R2=0.43) while detecting phosphorus content using two wavelenghts of the red-edge in the 
equation (R675, R680). In recent studies, the Visible green region and NIR region were also 
found to relate to phosphorus, and the effective wavelengths for P were 416, 421, 424, 427, 
458, 485, 664, 819, 828, 839, 902, and 933 nm (Peng et al., 2020). The visible spectral region 
is the pigments absorption region, the chlorophyll tends to absorb in the blue (400-500 nm) 
and red (660-680 nm) spectral regions (Meler et al., 2017). The effects of P content on maize 



Proceedings of the 15th International Conference on Precision Agriculture 
June 28 – July 1, 2020, Minneapolis, Minnesota, United States page 9 
 
 

growth and spectral reflectance were studied and the sensitive bands of P were 763 nm, 815 
nm, and 900–1000 nm (Qiao et al., 2022). However, our predictive model suggests only 2 
selected important wavelengths (the highest variable importance values) to predict P with high 
accuracy compared to newly developed spectral models.  
 
 
Conclusion  

The results indicates that the phosphorus leaves content impact the spectral reflectance 
around the wavelengths 560 nm and 720 nm. Therefore, these wavelengths could be used to 
detect phosphorus status in wheat leaves.  
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