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Abstract.  
In a time of increasing ecological awareness, organic agriculture offers sustainable solutions to 
many of the polluting aspects of conventional agriculture. However, without synthetic inputs, 
organic agriculture faces unique challenges such as weed control and fertility management. 
Precision Agriculture (PA) has been used to successfully increase input use efficiency in 
conventional systems and now offers itself as a potential tool for organic farmers as well. PA 
enables on farm precision experimentation (OFPE) to systematically generate an understanding 
of crop response to varied inputs. We investigated the first principle relationship between cover 
and cash crop seeding density and yield output in a greenhouse experiment before testing this 
relationship in field settings on four Montana farms. In the field we explored the effect of varied 
seeding rates on harvested crop yield using OFPE; by seasonally repeating experimental input 
rates on fields, the seeding rates can be optimized spatially and temporally for maximized farmer 
net return. We optimized seeding rates by using machine learning crop response models trained 
on the experimental data. Random forest algorithms were used to construct predictive models 
that included yield responses from combine mounted sensors, input crop seeding rates, satellite 
information such as NDVI from previous growing seasons, topographic variables, and growing 
degree days. Using the predictive crop yield model, simulations revealed that optimized variable 
seeding rates maximized whole-field net returns and typically outcompeted farmer chosen or 
whole field optimized single field rates. The project aims to move forward with an open-source 
decision support tool that will enable farmers to practice OFPE with greater ease, thus 
encouraging adoption of both precision technologies and agroecological farming principles.  
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Introduction 
The primary goals of agriculture are twofold: maintain nutritious and bountiful food sources for the 
planetary population and maintain or improve environmental conditions. One framework which 
envisages accomplishing these goals is that of agroecological intensification. Rather than 
sustainable intensification which still prioritizes yields(Garbach et al., 2017), agroecological 
intensification seeks first to improve environmental conditions then achieve quality and quantity 
of crops. Agroecological intensification can harness new technologies like precision agriculture to 
augment farmer knowledge of an area to achieve their goals (Duff et al., 2022). In organic 
agriculture, inputs can be optimized to reduce waste while improving yields, soil health, and 
farmers’ net returns. In this way organic agriculture, which substitutes cover crops and manure 
for more harmful agrochemicals, can achieve resilient yields, quality products, and high net 
returns while maximizing ecosystem services in an agricultural setting. 
The clearest method of deploying precision agriculture tools in organic operations is through 
optimized seeding rates of crops; this includes both harvestable cash crops, and soil health 
building cover crops. In organic systems, nitrogen fixing green manure cover crops (GM) are 
essential for supplying nitrogen for the following season’s cash crops and limiting weed growth. 
In dryland organic production systems, GMs acquire nitrogen rich biomass at the expense of 
water loss. This balance must be finely tuned to provide optimum nitrogen and water for the 
following season, such that the cash crop’s yield potential is reached, and net return is maximized 
for the farmer. Research has shown that pea (Pisum sativum L.) is the ideal plant to fix the most 
nitrogen with the least water loss in arid organic farm systems (Lawley & Shirtliffe, 2004; Miller et 
al., 2011; Wang et al., 2012; Zentner et al., 2004). By terminating the plant at first bloom stage, 
just before its maximal nitrogen fixation phase, crucial amounts of water are conserved (McCauley 
et al., 2012; Miller et al., 2011). It is well understood that increasing seeding rate of GMs increases 
nitrogen fixation asymptotically up to a maximum threshold (Mccauley et al., 2012; Usukh, 2010); 
seed increase also suppresses weed growth, and likely increases water consumption (Gan et al., 
2007; Tully & McAskill, 2020). Using plot-based research, agronomists have established a broad 
range of applicable seeding rates for green manures across the NGP, though in reality optimum 
rates are site specific (Baird, 2007; Johnston et al., 2002; Spies, 2008).  
Site specific seeding rates can now be managed using precision agriculture (PA) tools, including 
GPS, variable rate technology, and yield monitors. Many of these tools are already owned by 
organic farmers, though their on-farm application is limited (Finger et al., 2019; Griffin et al., 2017; 
Mitchell et al., 2018). Organic agriculture, while showing great potential, has been underfunded 
and under-researched, and basic organic agronomic principles poorly explored (Miles et al., 
2017). Therefore, to bring the power of precision agriculture to organic operations we seek to 
determine the first principle relationship in a typical organic crop rotation sequence between 
seeding rate for both cover and cash crops and biomass production. We explored these 
relationships in a preliminary greenhouse study using the common organic grain crops pea and 
Kamut (Triticum turanicum), at varied densities, before expanding the project to field level 
operations and deployment. In the field a methodology of on farm precision experimentation 
(OFPE) was followed, in which rates of an input are randomly varied over an entire field to 
determine site specific optimums. OFPE, which relies on PA tools, is a mechanism to gain 
knowledge and adaptively manage crop inputs at the field and sub-field scales and can be applied 
in organic systems (Cook et al., 2018; Lacoste et al., 2022).  By exploring the relationship between 
applied experimental seeding rates and the response of yield a field’s spatial variability can be 
revealed, and if repeated over years the temporal variability can be optimized field by field 
(Lawrence et al., 2015). OFPEs were established on one field each on four separate farms across 
Montana to assess their applicability in organic grain production settings. 
Greenhouse results confirm that varied pea seeding rates contribute to the varied levels of 
biomass production and fixed and available nitrogen (N). Field experiments were used to develop 
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models to predict optimal site-specific green manure seeding rates and following year cereal crop 
seeding rates that maximized producer profitability in the organic fields where OFPE was applied. 
Results revealed yield responses to the varied rates that are spatially explicit, thus offering 
potential optimization strategies that could reduce input waste, increase yield, and provide more 
consistent net returns to organic farmers.  

Methods 
Greenhouse Experiment 
The goal of the greenhouse experiment was to determine optimum green manure and cash crop 
seeding rates. Garden boxes measuring 50cm by 50cm and 25cm deep were filled with sterilized 
soil mixed with 50% sand to emulate the sandy, low nitrogen conditions typical of agricultural 
settings in north central Montana. The green manure tested was Arvika green peas (Pisum 
sativum), a common Montana crop and variety; the cash crop tested was Kamut, a typical organic 
cereal grown in Montana. Seeding rates encompassed a range well below and above typical 
farmer chosen rates and included pea rates at 0, 42, 78, 204 kg/ha (0, 7, 13, 34 seeds per box). 
Pea plants were grown for approximately eight weeks at optimal light and temperature growth 
conditions. Plants were terminated at first flowering stage, when roughly half the plants were 
flowering, which is the recommended termination stage to maximize N production and minimize 
water loss in arid conditions (McCauley et al., 2012). Pea plants were mixed into the soil and 
allowed to decompose over six weeks; the soil was kept moist and occasionally stirred. Kamut 
seed was planted into the boxes at four rates: 25, 50, 75, 100 seeds/box (30, 60, 90, 120 kg/ha) 
across each pea rate to create a full factorial design (4x4). Kamut was grown until maturity, which 
took approximately twelve weeks, then was harvested. The soil was sampled to track nitrogen 
gain and loss in the soil at multiple time points: at pea planting, pea termination, Kamut planting, 
and again following Kamut harvest. Data was analyzed with regression analysis using generalized 
linear models to determine the relationship between the green manure seeding rate and Kamut 
seeding rate and final Kamut biomass and yield response. 
On Farm Precision Experimentation of Seeding Rates and Harvest Yield 
In the field portion of this project, on farm precision experimentation (OFPE) was used to generate 
field scale experiments to determine potential optimum rates of nitrogen-fixing green manure 
cover crops, and cash crops such as wheat, barley, or Kamut, and on one farm bloodmeal was 
varied to determine its optimum input rate. Rates were varied randomly across the field in order 
to understand within field spatial variation based on continuous georeferenced yield monitor 
combine data. As all organic farmers face weed challenges, variation in weed density was 
manually sampled. A total of four separate Montana certified organic farms collaborated on this 
project, and each farm conducted experiments on one field. Farms are here referred to as farms 
A:D. The first three farms conducted OFPE with seeding rates of green manures and cash crops, 
and farm D experimented with varied rates of bloodmeal, an organically approved source of 
nitrogen, on wheat cash crops. The acreages of the fields varied from 32 to 93 hectares.  
Initially one field per farm was extensively soil sampled (approximately one sample for every two 
acres). The samples were analyzed for total nitrogen content in Montana State University’s 
Environmental Analytics Laboratory (EAL) and were used to build a fertility map of each field. 
Wherever possible, the fertility map, previous yields, and other geographic variables were used 
to stratify GM seeding rate strips across the field to maximize variability within each randomized 
replicated strip. Experiments were initially designed to incorporate five rates of pea at 1.5X, 1.0X, 
0.75X, 0.5X and 0X of farmer selected rates. These were planted with standard planters owned 
by each farmer. Given differences in equipment and ever-changing field and weather conditions, 
the exact number and level of different rates was not followed precisely. In year two, differing 
seed rates of cereal crop were planted on top of the green manure variable strips such that each 
green manure rate had every level of the cereal crop overlaid. Cereal seed rates were to similarly 
be 1.25X, 1.0X, 0.75X, and 0.5X of recommended organic rates. These were target rates, and in 
practice rates were adjusted by farmers’ specific needs as seen below. 
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The farms joined the project at different times and experiments therefore started in different years. 
In 2019 farmer A planted peas on a 32-hectare field (soil sampled) at rates of 0, 60, 90, and 
135kg/ha, and tilled them in after approximately eight weeks. In 2020 they planted barley over the 
same field at 60, 75, and 90 kg/ha, but unfortunately hail damage wiped out 90% of the crop, and 
the remaining plant matter was removed as hay bales. Barley was again planted at the same 
rates in the spring of 2021, and harvested at the end of July 2021. In spring 2020 farmer B planted 
peas at 70, 90, 110, 130 kg/ha on a 32-hectare field till them in in summer and planted winter 
wheat at a single rate in fall 2020. In spring 2020 farmer C planted peas at rates of 80, 100, 120, 
and 140 kg/ha across a 93 hectare field and tilled them in approximately eight weeks later. Winter 
wheat was planted in fall 2020 across the field at varied rates of 55, 70, 85, and 100 kg/ha. Farmer 
D planted spring wheat at a uniform rate across a 67-hectare field. Bloodmeal was applied across 
the growing wheat at rates of 0, 3.5, 7, 15, 20 kg of N/ha. Yield data were collected from the 
combine monitors. Crop and weed biomass data were collected during the growing season to 
track how the varied seeding rates affected crop and weed growth. Approximately 60 points were 
chosen at random across each field and stratified on seeding rate. Samples of both crop and 
weed species were taken as conducted by Bussler et al. (1995).  
Statistical Analysis 
Point data from the seeder (as applied map) and combine (yield map) were added to a square 
10m x 10m grid of the field. Normalized Difference Vegetation Index (NDVI) and topographic 
information and satellite data were compiled via Google Earth Engine using satellite information 
from NASA’s Modis and Landsat 8 instruments (He et al., 2018) and were also added to the data 
set. Means of points were taken when more than one point existed per cell. To remove border 
effects, headlands, as measured by 30 m from the field edge, were removed from analysis. From 
this accumulated data set random forest models were constructed to find optimized seeding rates 
for minimized weed presence and maximized yield. Moran’s I test, linear models and random 
forest models were tested in R (Version 1.1.453 – © 2009-2018 RStudio, Inc.), on data sets 
assembled in QGIS. Moran’s I test was used to verify that the seeding rate variable interacted 
spatially and affected weeds and yields differently in different parts of the field. The random forest 
model used for each field varied based on input data, but a typical model is seen below. 
Model 1 = Yield ~ f {Pea Seed Rate, Barley Seed Rate, Elevation, X, Y, Slope, Aspect, 
Topographic Position Index, Weed Biomass 2019-2021, NDVI 2019-2021, Precipitation 2021, 
Bulk Density, Clay Content, Soil pH, Soil Water Content, Soil Carbon Content, Nitrate at 10 and 
30cm} 

Model 1 included yield as the response variable to seeding rate of pea and wheat, and topographic 
variables: elevation, x and y coordinate points, slope, aspect, and Topographic Position Index; 
also included were the season’s weed values as found from interpolated sample data; satellite 
data including: Normalized Difference Vegetation Index (NDVI) from the harvest year, the year 
prior to harvest, and two years prior to harvest, the current year precipitation, bulk density, clay 
content, pH, water content, and soil carbon; and soil sample data including: nitrate to six inches, 
and nitrate to 24 inches. Based on the predictions of this model ideal seeding rates were estimated 
for maximized yield across each grid cell. As an example, a subset of the variables collected for 
the above method is shown in maps in figure 1 including topographic variables (1A), satellite 
variables (1B), manually sampled variables (1C), and machine variables (1D).  
Economic Analysis 
Net returns were calculated based on farmers’ reported costs of seed and price received for 
product. Prices received in our tested harvest years ranged from $13 a bushel to $23 a bushel. 
To compare these to historic conditions, a data set tracking organic prices from grain elevators 
over the last 21 years was used. Varied fixed rates collected from the USDA were also included 
over these years (Table 1). To ascertain the probability that one method would outcompete 
another, a Monte Carlo simulation analysis was conducted using the 21 years of economic data 
such that the simulation outcome of yield and recommended seeding rates was tested across 
every year of economic data. In this way we found the probability that one method (farmer chosen 
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rates, optimum average rates, or variable seeding rate) was better than the others given varied 
economic conditions. 

 

 
Figure 1A) 32 hectare Field A showing topographic input variables for modeling including panel 1) elevation, panel 2) 

slope, panel 3) aspect, and panel 4) topographic position index (TPI). 
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Figure 1B) 32 hectare Field A showing satellite input variables for modeling including panel 1) pH, panel 2) water content, 

panel 3) carbon content (%), and panel 4) clay content (%). 

 
Figure 1C) 32 hectare Field A showing on the ground collected data for modeling including panel 1) nitrate 0-10cm, panel 

2) nitrate 10-30cm, and panel 3) sampled weed biomass in cubic meters per square meter. 
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Figure 1D) 32 hectare Field A showing on the machine collected data for modeling including panel 1) experimental pea 

seeding rates from 2019 (missing patch too wet to seed), panel 2) experimental barley seeding rates from 2020 (repeated in 
2021 due to hail 2020), and panel 3) yield results from barley harvest 2021. 

Results 
Greenhouse Study 
Results from the greenhouse study confirmed the first principle relationship that seeding rates of 
green manure affected nitrogen availability for the following cash crop. When the peas were 
terminated at first flower stage, the presence of root nodules indicated that they were fixing 
nitrogen. Soil from each box was sampled throughout the experiment and N levels in parts per 
million (ppm) can be seen at each experimental time point in figure 2. When peas were planted 
the soil had a mean level of soil nitrate of 4.12 ppm. When the peas were terminated eight weeks 
later soil N had been consumed by the pea plants and nitrate levels declined to a mean of 3.26 
ppm. After the six-week decomposition period of the pea biomass a significant amount of N was 
added to the soil (p-value = 0.009) and the N level rose to an average level of 12.46 ppm. This is 
highlighted to verify that nitrogen fixation did indeed occur within the pea plant root. Finally, at 
Kamut harvest the soil N levels fell to 0.700 ppm as the cereal crop consumed nearly all of the 
plant available N in the soil converting it into plant biomass and harvestable Kamut seed. 

 
Figure 2) Soil nitrogen levels in ppm at each experimental point, from the original soil the peas were planted into, to the 
stage when peas were terminated, to the Kamut planting stage, and finally at the end of the experiment when the Kamut 

was harvested. 

Nitrogen change was tracked in each individual box such that the effect of pea seeding rate could 
be assessed. In figure 3 we can see how pea seeding rates created varied levels of change in 
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nitrate between pea and kamut seeding times; as pea seeding rates rise the plant available 
nitrogen also rises. While the specific curve is somewhat unclear due to high variation; there does 
appear to be an optimum; there is weak evidence (p-value = 0.19) to support our model showing 
that soil nitrate reaches a peak at around 90 kg/ha pea seed rate and then begins tapering off as 
higher pea seeding rates become detrimental to pea growth as predicted by plant competition 
models (Freckleton et al., 2009).  

 
Figure 3) Change in soil nitrate in ppm between original pre-experiment soil and soil at the point of Kamut planting when 

pea biomass had decomposed. Each point represents each individual planting box and its soil contents. 

In the next stage of the experiment, we tracked how Kamut and pea seeding rates would affect 
final Kamut yield. In figure 4, the curve shown fits a quadratic curve wherein the yield gains slow 
as seeding rates rise, reaching a maximum yield around the maximum tested seeding rate of 
Kamut. As Kamut seeding rate rises we found strong evidence that overall Kamut yield also rises 
reaching a peak level around a seeding rate of 120 kg/ha (p = 0.027). In figure 5 we see the effect 
of the pea seeding rate on Kamut yield. In this situation we are tracking how the pea seeding 
rates affected the following crop’s yield. These results show a very similar trend to the soil nitrogen 
affects from pea seeding rate seen in figure 3. Here again we see weak evidence that pea seeding 
rate creates a maximum response in Kamut yield around the 100kg/ha mark (p = 0.160). While 
repetitions were insufficient to show significance (of 𝛼 = 0.05), we can nevertheless observe likely 
and predicted trends wherein low and high seeding rates are beyond optimum levels. These 
trends highlight the ability of a pea green manure crop to provide nitrogen to the following crop, 
while specific seeding rates of both the green manure and the cash crop are important in finding 
optimums.  

 
Figure 4) Kamut yield per garden box as a function of varied Kamut seeding rates. 
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Figure 5) Kamut yield per garden box as a function of pea seeding rate. 

 
Figure 6) Kamut yield as a function of Kamut seeding rate and underlying pea seeding rates, highlighting the ability to find 

overlapping optimums. 

By combining pea and Kamut seeding rates, we determined overlapping seeding rates that lead 
to the highest yielding combinations. As noted earlier optimum pea seeding rate appears around 
the 90-100kg/ha zone, and Kamut yields respond to this as shown by the dark green area rising 
through the center of figure 6. Kamut yields tended to increase towards the higher rates tested, 
but appeared responsive to specific levels of pea seeding rates. We expect this trend then to be 
replicable for spatially variable field locations where each specific field space will be optimizable 
for both green manure and cash crop seeding rates. This was an important step in validating the 
proof of concept for our field experiments with varied pea and cereal crop seeding rates.  
On Farm Precision Experimentation of Seeding Rates and Harvest Yield 
A list of final outcomes is shown in tables 2 and 3. A specific example of the results is shown from 
farm A in compiled maps shown in figure 7A-D. From farm A we can see the output from 
simulations as generated using model one from methods in the random forest model. These 
simulations predict yield and net return values based on three input scenarios. In the first scenario 
we set the seeding or bloodmeal rates as a single rate that would be typically chosen by a farmer 
(FRM) and spread across the whole field; in the example shown this is pea green manure followed 
by the cash crop of barley. The second scenario shows optimized average rates (OAV) across 
the whole field based on maximizing net return using only one rate across the field. The third 



Proceedings of the 15th International Conference on Precision Agriculture 
June 26-29, 2022, Minneapolis, Minnesota, United States  

10 

scenario displays optimized variable rates (VRT) of pea and barley across each cell of the field. 
The fourth panel of figure 7 illustrates new randomized experimental rates that incorporate half of 
the field and the other half uses the newly discovered optimum rates as a baseline for improving 
farmer net return. This final situation represents our recommendation for the farmer to continue 
experimentation over future years even as they add optimized zones to their management. 

 
In scenario one, shown in figure 7A, farmer chosen rates of pea (90 kg/ha) and barley (75 kg/ha) 
are shown in panels 1 and 2, followed by yield and net return in panels 3 and 4. Due to low rainfall 
in 2021, yields were relatively low on this field (675 kg/ha as seen in table 2). This effect is picked 
up in the model and when farmer chosen rates were simulated across the field the predicted yield 
was similarly low (658.8 kg/ha), generating a predicted net return of $153.72/ha. The red and 
orange areas of the map denote the poorest performing areas of the field and they tend to 
correspond to weedy areas of the field (figure 1C), and to areas of higher elevation (figure 1A). 
Net returns were likely low in those areas due to weed competition and lack of moisture. These 
effects highlight the variability at play across the field. 
Figure 7B shows simulated results from a scenario in which one optimum rate was selected based 
on the results of our experiment. In this instance we note that the model selected the lowest 
allowable rates for an optimized single rate. This is likely an effect of the very dry year that was 
the last year of this experiment. In low precipitation years lower plant densities perform better as 
they use less water. By lowering the seeding rates our model predicted an increase in yield; due 
to decreased seed costs and increased yield a higher net return of $179.39/ha was found. These 
net returns come from both lowering seeding rates where they are not conducive to further yield 
growth, and from increasing yield by reducing intra-crop competition for water.  
These gains are further improved upon when variable rate of both pea and barley are planted 
across the field (figure 7C). In this scenario we simulated the farmer planting specific varied rates 
of both cover and cash crop to maximize net return. We saw further yield gains here as areas of 
the field that the model predicts can support higher plant densities are enabled to do so. In this 



Proceedings of the 15th International Conference on Precision Agriculture 
June 26-29, 2022, Minneapolis, Minnesota, United States  

11 

way those prime growing areas of the field increase plant matter and consequent yield. Similar to 
the greenhouse experiment where higher cover crop densities produced higher cash crop yields, 
higher cover crop densities were predicted to improve cash crop outcomes. Through 
experimentation we have been able to pinpoint those areas and select them for increased plant 
densities in future seasons. This method maximized net returns to a predicted $180.51/ha level, 
an increase of $26.79/ha above what the regular farmer used rates are predicted to have 
generated.  
To compare these methods against each other statistically, we used 21 years of historic economic 
data to understand how economic variation may favor one method over another. A compilation of 
these results for each farm is shown in Table 3. Following the example of farm A to this table we 
see that the variable rate scenario outcompetes both the farmer chosen rates, and the optimum 
average rates, in every year of economic conditions sampled. This same result was seen in farm 
B where the variable rate scenario fully outcompeted the other two scenarios 100% of the time. 
On farm C there was less certainty. While the variable rate scenario outcompeted the farmer 
chosen rates every time, the variable rate only outcompeted the optimum average scenario 67% 
of the time. This emphasizes that while variable rate is typically the best input rate strategy, the 
optimum average rate is a close second. Indeed on farms A, B, and C, the optimum average net 
return was considerably higher than the farmer chosen rate, but much closer to the optimized 
variable rate method.  
Farm D was the exception to the trends seen on the other farms. In this situation the farmer 
applied blood meal in order to experiment with the effect of varied rates of nitrogen directly on 
their cash crop of spring wheat. While our goal as researchers was to learn about the variation in 
the field and optimize input rates, a broader result showed that blood meal had very little effect 
on the wheat yield. Due to its poor showing, any use of the product (which cost the farmer $1 per 
pound of nitrogen added per acre), reduced the farmer’s net return. Due to the experiment, the 
farmer discontinued their use of the product and is exploring other organic nitrogen inputs instead. 
The optimized rate of bloodmeal is zero on every grid cell of the field; so in this instance the 
optimized variable input rate never outcompetes the optimized single rate. The results of these 
experiments highlighted the variability present across every field tested, and the ability to vary 
input seeding rates or other inputs to maximize farmer net return. 

 
Figure 7A) 32 hectare Field A showing simulated results of applying farmer chosen single rates. Panel 1) pea seeding rate, 
panel 2) barley seeding rate, panel 3) simulated yield from random forest model shown in model 1, and panel 4) net return 

given seeding rates and simulated yield. 
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Figure 7B) 32 hectare Field A showing simulated results of applying optimum average rates for pea (panel 1) and barley 
(panel 3) which the model predicts would garner highest net return without varying rates. Panel 3) simulated yield given 

these rates, and panel 4) net return given these seeding rates and simulated yield. 

 
Figure 7C) 32 hectare Field A showing simulated results of applying optimum variable rates for pea (panel 1) and barley 

(panel 3) the model predicts would garner highest net return given the option of varying rates in every cell across the field. 
Panel 3) simulated yield from random forest model shown in model 1 given variable rate seeding rates, and panel 4) net 

return given these seeding rates and simulated yield. 
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Figure 7D) 32 hectare Field A showing optimum variable rates given actual seeder capabilities in width (21m) and length 
given speed of variable rate change (73m); panel 1) optimum variable pea rates, 2) optimum variable barley rates, and in 

panels 3 and 4) half the strips are randomized for continued experimentation. These are the rates we would recommend for 
the farmer the following seasons this rotation repeats. 

Discussion 
It is well understood that spatial variability across fields can and should be accounted for in 
farming practices. In pre-modern agriculture, farmers managed small areas of land, understood 
the variation across their domain, and were able to effectively manage it to maximize yield returns. 
Using the power of precision agriculture we can begin to steer industrial agricultural operations, 
be they organic or otherwise, back toward these more holistic management methodologies 
(Garbach et al., 2017; Lacoste et al., 2021). From this experiment we were able to generate 
greater understanding of field variability, which was inherently known to exist, and begin showing 
farmers a methodology of understanding how that variability interacts with their crop, and how 
they can maximize their benefits from it by responding to that field variability with their own varied 
input rates. Specifically, we were able to see this in practice through varied seed inputs of cover 
and cash crop across organic farms in Montana. 
Moving forward, these results can be harnessed to deploy optimized input rates on fields that 
have been experimented on. Continued long term experimentation is crucial; while an initial 
sequence of experiments revealed and built upon understandings of spatial variability, continued 
experimentation will reveal temporal variability, an equally key component of farm variation 
(Lawrence et al., 2015). In arid Montana, a focus on temporal variability will concentrate on 
precipitation, the key weather variability of concern for farmers. The lack of variability in 
precipitation patterns within the results shown here is limitation that will be overcome with 
repeated experimentation in the future. Each farmer has expressed a keen interest in continued 
experimentation, and results will vary year to year as the climate naturally moves through wetter 
and dryer cycles. 
It hoped that the results of this project can help farmers mitigated the effects of climate change, 
which are already impacting agriculture (Liu et al., 2022; Ray et al., 2019). Because this project 
and its outcomes focus on the ability of farmers to adaptively manage using constantly updated 
in-field conditions, the OFPE methodology is a prime example of how farmers can prepare to 
manage in an era of climate change. Since the models respond to real conditions, as the climate 
continues to change, farmers can update their management practices to suit.  
There are many possible future directions of this work. Because the project aims to provide free 
information to farmers, it will be useful to incorporate as much remote sensing data as possible. 
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Many satellite soil and vegetation indexes are incorporated into our models, and moving forward 
these indexes will likely improve in both scale and accuracy and thus predictive power. It is hoped 
that sampling methods for weed and soil can be replaced in the coming years with accurate 
remote sensing variables. This is a transition that appears well on its way (Robb et al., 2021). 
While much work has been done to make this projects methods available to farmers (see 
http://trialdesign.difm-cig.org/demo, and https://github.com/paulhegedus/OFPE), we hope to 
improve these designs and make them ever more accessible to farmers, consultants, and 
researchers alike.  

Conclusion  
Our goals in this research were to first determine that varied seeding rates of green manure cover 
crops can affect yield in subsequent cash crop harvests, and secondly to determine that these 
rates could be varied in a way to determine actual field site specific optimums for farmers using 
PA. The greenhouse results highlighted in figure 7 showed that optimum overlapping rates of 
green manure and cash crop rates could be found. In the field experiments where farmers 
deployed OFPE over whole fields we were able to determine site specific optimums for both cover 
and cash crops that were shown to outcompete farmer chosen rates. Through these experiments 
we have established OFPE in organic systems as a viable method of deploying underutilized PA 
technologies in order to improve farmer net returns. 
Our results have shown that natural variability can be incorporated and built upon in farm 
management strategies. This mode of thinking, enabled by precision technologies, practiced with 
on farm experimentation, and conducted by farmers for their own net gain, can allow farmers to 
work in concert with local ecologies and work with variability rather than against it. Precision 
technology then can allow for holistic and agroecologically managed farms that are healthier for 
nature, farmers, and the broader human population, creating long term resiliency for these 
agroecological spaces and their interconnected surroundings. 
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