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Abstract. 
Many approaches have been developed to estimate the optimal N application rates and increase nitrogen use efficiency (NUE). In particular, in-season and zone-specific variable-rate fertilizer applications have the potential to apply N during the time of rapid plant N uptake and at the rate needed, thereby reducing the potential for nitrogen fertilizer losses. However, there remains great challenges in determining the optimal N rate to apply in site-specific locations within a field in a given year. Additionally, the benefit to variable-rate and in-season N application has not been well quantified in some regions. Crop growth models may be used to explain dynamics that influence optimal N rate and make predictions of future N need.
A non-irrigated, on-farm experimental site was established in 2020 to evaluate N rate and timing in two contrasting zones. Intensive sampling consisting of soil moisture, temperature, ammonium, and nitrate, and leaf area index (LAI) was conducted to calibrate the Agricultural Production Systems sIMulator (APSIM) model. Precise weather data and model characterization of the shallow water table and tile drainage present at the site was critical in improving model performance. The calibrated model predicted yield over 10 historical years with a relative root mean square error (RRMSE) of 10.2% for corn and 29.0% for soybean.  
We quantified the APSIM model accuracy in predicting the economic optimum N rate (EONR) in contrasting zones. In the experimental year, observed EONR, yield at EONR (YEONR), and yield at 0 N (YN0) were similar between zones. The model predicted EONR was lower than the observed EONR in both zones (43 kg ha-1 and 84 kg ha-1, for the north and south zone, respectively). The calibrated model was used to simulate yield response to N over 20 years. EONR varied by 41% between the zones while YEONR was only 4% different. The north zone had 14% lower YN0 and was 32% more responsive to N. The consistent difference between the zones demonstrates the potential for site-specific N management by zones. Additionally, the large temporal variation in EONR demonstrates the need for predictive tools to manage year-to-year variability in N supply and crop demand. 
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Introduction
Nitrogen management of corn is a critical issue with far reaching implications including crop productivity, farmer profitability, environmental (i.e., groundwater quality) and social (i.e., safe drinking water availability). Predicting the economic optimum nitrogen (N) rate (EONR) remains challenging due to unaccounted for spatial and temporal variability in crop yield, soil N supplying capacity, and N loss dynamics (Mamo et al. 2003). Many approaches have been developed to estimate the EONR and increase nitrogen use efficiency (NUE). In particular, variable-rate fertilizer applications have the potential to apply N at the rate needed, thereby reducing the potential for nitrogen fertilizer losses. However, there remains great challenges in determining the optimal N rate to apply in site-specific locations within a field and given year. 
Several approaches have been proposed and evaluated to determine or direct site-specific N requirements in precision agriculture. The use of crop canopy sensors to direct in-season N management has been widely evaluated (Bastos 2019; Bean 2018; Franzen et al. 2016; Lo et al. 2019; Raun et al. 2002; Schmidt et al. 2011; Shaver et al. 2011; Sripada et al. 2008; Thompson et al. 2015; Ward 2015); however, adoption remains low (Erickson et al. 2017). Sensor-based approaches account for spatial variability through crop reflectance sensing but are unable to incorporate other site-specific information such as yield data, soil data, and other spatial data which could refine the N recommendation by management zone. Additionally, sensor-based approaches do not account for soil-crop-weather interactions to dynamically estimate future N need. 
Crop growth models provide an alternative approach for zone-specific N management. Process oriented crop models can simulate impacts of weather, management practices, genetics, soil, water table, and their interactions on crop growth, crop yield, and nitrogen cycling. Studies have evaluated the application of crop models for zones within a field. In one study, imagery was used to delineate management zones, then a process based model was run for each zone (Basso et al. 2001). In another study, crop models simulations of EONR by homogenous management zone were found to increase net return (Miao et al. 2006). The availability of commercially available crop models for zone-specific N management has increased in recent years (Bobryk et al. 2016; Sela et al. 2016); however, transparency of model mechanisms is often limited and simplifications to allow for system scaling may decrease the reliability of these recommendations. 
Determining how well cropping system models can predict crop yield, N dynamics, and EONR for homogenous zones within a field can be used to develop better N recommendation tools (Puntel et al. 2016). Detailed calibration of crop models can increase our understanding of the role of crop models in predicting zone-specific N need, provide insight into parameters important for commercial crop model success, and identify the spatial and temporal characteristics where crop models are most advantageous. The main objectives of this study were to: a) calibrate a process-based model for contrasting zones within a field in southeast Nebraska and discuss important factors in calibration, b) quantify the accuracy of the calibrated model in predicting the EONR in contrasting zones, and c) utilize the calibrated model to simulate the long-term corn yield response to N. 
Materials and Methods
Experimental sites and design
A field experiment (DA) was conducted in a farmer field in southeast Nebraska near Falls City, Nebraska, USA in 2020. The site consists of Kennebec silt loam soils (fine-silty, mixed, superactive, mesic Cumulic Hapludolls) located in a flood plain with the presence of a water table at approximately 1.2 meters. The climate at the site is humid continental (warm, rainy summers) with annual precipitation of 726 mm and a mean temperature of 12°C and is non-irrigated. Soil type, elevation, landscape position, yield history, and historical imagery were used to delineate two zones, referred to by relative location as north zone (NZ) and south zone (SZ). Nitrogen treatments were initiated in fall 2019 and summer 2020 for the 2020 corn crop. The experimental design was a randomized complete block design with six replications. Multiple replications were located in each zone. There were five pre-plant only N fertilizer treatments (127, 160, 194, 228, and 261 kg N ha-1, hereafter N127, N160, N194, N228, N261) and two split-N fertilizer treatments with pre-plant and in-season application (228 plus 34 and 261 plus 34 kg N ha-1; hereafter, NS262 and NS295). Variable rate monoammonium phosphate was applied to both sites in February to maintain soil P levels. Nitrogen contribution from the monoammonium phosphate was accounted for in the N rate trials. The previous crop was soybeans. Corn variety Pioneer® P1197 was planted on May 6 in 76 cm row spacing. 
Measurements
In each zone, soil OM and texture (percent sand, silt, and clay) were characterized in 15 cm increments from 0 to 122 cm depth (Figure 1). Intensive sampling was conducted on one replication in each zone. Intensive sampling consisted of soil moisture, temperature, ammonium, and nitrate, and leaf area index (LAI). Soil tensiometer sensors were placed in low (N127) and high N rate (N261) plots at 30, 60, and 90 cm depths. Soil temperature sensors were placed at 30 cm depth. Soil tensiometer and temperature data was recorded every 30 minutes during the growing season. Soil nitrate and ammonium were measured in five N rates (N127, N228, N261, NS262, and NS295). Soil samples were taken at 0-30 and 30-60 cm depths on four dates which correspond to V4, V11, R1, and R6. Each time, five soil cores were taken from every plot and homogenized into one sample. Leaf area index was measured with a LI-COR LAI2000 Plant Canopy Analyzer (LI-COR Biosciences, Lincoln NE). Measurements were taken for each N rate at V8, V10, V15, R1, R3, R5, and R6. Crop phenology was recorded approximately every week using the V/R system for corn (Abendroth et al. 2011; Ritchie and Hanway 1982). Corn yields were determined using a combine with a calibrated yield monitor. Hybrid potential was documented by determining maximum corn grain number and weight from five large ears on the field edge. Historic yields from 2010 to 2020 were obtained for each zone using yield monitor data, when available, and whole field weight records when yield monitor data was not available.
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Fig 1. A) Site DA aerial imagery and north (red) and south (blue) zones. B) Soil texture and organic matter for north zone. C) Soil texture and organic matter for south zone.
APSIM Model Set-up and Calibration
The open-source Agricultural Production Systems sIMulator (APSIM; Keating et al. 2003; Holzworth et al. 2014) combines process-based models in a modular design for simulating complex agricultural systems. Details about APSIM can be found at http://www.apsim.info. We utilized the following modules in APSIM: corn and soybean crop models (Keating et al. 2003), Soil N (soil N and C cycling model; Probert et al. 1998), SWIM (soil water model for fluctuating shallow groundwater tables and tile drainage; Malone et al. 2007; Huth et al. 2012), SURFACEOM (residue model; Probert et al. 1998; Thorburn et al. 2001), and management rules for planting, harvesting, fertilizer, tillage, and rotation. The SWIM soil water model was used to simulate water balance processes in the presence of shallow water tables and tile drainage (Malone et al. 2007). Additionally, a manager rule was added to simulate atmospheric N deposition as a function of daily precipitation (N deposition in kg N ha-1 d-1 = 0.0078 × precipitation in mm (Holland et al. 2005; Puntel et al. 2016).
The simulation started on January 1, 2010 to provide a spin-up for simulated soil organic matter pools (fast decomposing, slow decomposing, and inert) to reach an equilibrium (Dietzel et al. 2016). The simulation was consecutive to account for carry-over effects from year to year and output was produced on a daily time step. Daily weather data was obtained from the nearest available Nebraska or Kansas Mesonet site (Nemaha, NE 6/18/1998 to 4/30/2014; Hiawatha, KS 5/1/2014 to 6/13/2019; Rulo, NE 6/14/2019 to 9/24/2020). Due to local rainfall variability, the Mesonet station did not accurately represent rainfall received at the sites during the 2012 growing season; therefore, observer data (Nebraska Department of Natural Resources n.d.) was substituted for March through August of 2012 which improved simulated end of season yields. 
Soil organic matter values were derived from baseline measurements to 1.22 m, then SSURGO (Soil Survey Staff 2021) data were used to configure the soil profile from 1.22 to 4 m at each location. Saturated hydraulic conductivity by layer was estimated using soil organic matter and texture (Saxton and Rawls 2006). 
Management rules were used for planting, harvesting, fertilizer, tillage, and rotation. The following input parameters were held constant across the 11-year simulation: planting depth of 5 cm for both crops, row spacing of 381 m-2 for soybeans, row spacing of 762 m-2 for corn, plant populations of 35 m-2 for soybeans, plant populations of 8 m-2 for corn, soybean variety (3.0 maturity group), corn hybrid (110-day), an annual monoammonium phosphate application, an annual strip-till application, and N fertilizer application depth of 180 cm. Corn and soybean planting date, N fertilizer application date, and N fertilizer application rate were adjusted for each year.
To calibrate the model, we used end-of-season observed data, knowledge from other APSIM calibration studies in the region, and expert judgement (Archontoulis et al. 2020). Details of model calibration are not provided in this document. 
The calibrated model was used to estimate EONR in historic weather years. Weather scenarios were assembled by iteratively replacing weather from the experimental year (2020) starting on January 1, with weather from years ranging from 1999 to 2019. The APSIM model was run with the apsimx package (Miguez 2022) to simulate yields for each of the 20 weather scenarios and 35 pre-plant N rates ranging from 0 to 350 kg N ha-1 in 10 kg increments.



Data Analysis
To evaluate the APSIM model goodness of fit, we used graphical and statistical methods. For statistical evaluation, we computed the relative root mean square error (RRMSE),

and mean absolute error (MAE),


The observed and simulated relationship between yield and N rate for the 2020 experiments was fitted with a quadratic-plus-plateau model using R software (R Core Team, 2020). For estimation of EONR in historic weather years, the relationship between simulated yield and N rates was fit with a quadratic-plus-plateau or with the linear-plus-plateau where the quadratic-plus-plateau did not converge. The EONR and yield at EONR (YEONR) was calculated from the N response equations by setting the first derivative of the fitting response curve equal to a price ratio of 4.5:1 N:corn grain price (US$ kg-1 N: US$ kg-1 grain) which was representative of the study year. Yield at no N fertilization (YN0) was determined by the y-intercept of the response curve.
Results and Discussion
10-year simulated and observed corn-soybean rotation yields 
The NZ was 730 ± 1,528 kg ha-1 more productive than the SZ (13,617 ± 1,290 kg ha-1 NZ and 12,887 ± 2,352 kg ha-1 SZ) over five corn years at the grower’s documented N rate (Figure 2). Observed mean corn yields from 2010 to 2018 ranged from 12,384 to 15,238 kg ha-1 in the NZ and 9,278 to 15,102 kg ha-1 in the SZ (Figure 2). The largest yield difference between zones occurred in 2018 when the NZ yielded 3,445 kg ha-1 more than the SZ. This year was characterized by drought conditions with rainfall from April 1 through July 31 53% lower than normal. Observed yearly mean soybean yields from 2011 to 2019 were relatively consistent. Soybean yields ranged from 3,836 to 4,413 kg ha-1 for NZ and 4,282 to 4,698 kg ha-1 for SZ. 
The calibrated APSIM model was able to capture the year-to-year variability very well (Fig. 2). Across both zones from 2010 to 2019, corn yield simulation had an RRMSE of 10.2 and MAE of 1072.7 and soybean yield simulation had an RRMSE of 29.0 and MAE of 760.8. Model characterization of the shallow water table and tile drainage present at this site was critical in improving model performance and in differentiating the zones (Archontoulis et al. 2020).
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Fig 2. Corn and soybean yields from 2010 to 2019. Black dots represent observed corn and soybean yields. Vertical bars represent the standard deviation of the mean yield in years where yield monitor data was available. Where error bars are not present, yield was obtained from whole-field scale records and are therefore not unique for each zone. The red and blue lines indicated the Agricultural Production Systems sIMulator (APSIM) simulated yields for the north and south zones, respectively.
Simulated and observed EONR of experimental year
In 2020, with imposed N rate treatments, corn yields ranged from 14,569 (N127) to 15,972 (N228) kg ha-1 (Figure 3). The observed EONR was similar between zones, with an EONR of 200 kg N ha-1 in the NZ and 212 kg N ha-1 in the SZ (Figure 3). Likewise, the observed YEONR was similar between zones at approximately 15,500 kg ha-1. The estimated YN0 was slightly higher (633 kg ha-1) in the NZ than the SZ. Yield response to N (YEONR-YN0) was 2,217 kg ha-1 in the NZ and 2,820 kg ha-1 in the SZ. 
To assess the impact of split-N fertilizer management compared to pre-plant only fertilizer, the treatment with split-N fertilizer was compared to the pre-plant only treatment with the closest N fertilizer rate. Yields were similar with 15,637 ± 213 kg ha-1 for the pre-plant only treatment (N261) and 15,673 ± 227 kg ha-1 for the split-N fertilizer treatment (NS262).
Model predicted EONR was 157 kg ha-1 in the NZ and 128 kg ha-1 in the SZ. Predicted EONR was 43 kg ha-1 lower than the observed at NZ and 84 kg ha-1 lower than the observed at SZ (Figure 3). Prediction of zone YEONR was better than prediction of the EONR. However, prediction of YEONR was 930 kg ha-1 and 991 kg ha-1 higher than the observed YEONR for NZ and SZ, respectively (Figure 3). 
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Fig 3. Corn yield response to N fertilizer for two zones at site DA. The blue points indicate the observations. The yellow points indicate the simulations from the Agricultural Production Systems sIMulator (APSIM) model. Continuous lines are regression fits. The red dots indicate the EONR for the observed and simulated points. For both simulated and observed, EONR, yield at EONR, and yield at N0 are shown.
Long-Term Simulated EONR by zone 
The average simulated EONR over the 20 years was 41% higher in the NZ compared to the SZ (250 ± 78 kg ha-1 for the NZ and 176 ± 82 kg ha-1 for the SZ; Figure 4). In comparison, the observed EONR in the experimental year (2020) was similar between zones, with EONR of 200 kg ha-1 for the NZ and 212 kg ha-1 for the SZ. On average, the YEONR was similar, with YEONR 4% higher for the NZ (16,185 ± 2204 kg ha-1) compared to the SZ (15,501 ± 2627 kg ha-1). On average, YN0 was 14% lower for the NZ compared to the SZ and varied from 7,423 to 10,664 kg ha-1 in the NZ and 8,988 to 12,767 kg ha-1 in the SZ (data not shown). This resulted in the NZ being 32% more responsive to N and is explained by the lower soil supplying capacity for the NZ. Cumulative mineralization from 2010 to 2020 was 19% lower for the NZ than the SZ at the farmer’s N rate (NZ cumulative mineralization was 1,697 kg ha-1 or 154 kg ha-1 year-1 and SZ cumulative mineralization was 2,100 kg ha-1 or 191 kg ha-1 year-1). Cumulative N loss from 2010 to 2020 were also lower for the NZ (27% lower) but did not make up for the lower N mineralization. Zonal differences in N supplying capacity demonstrate the potential for site-specific N management at this site. 
Extreme temporal variation in EONR and YEONR indicates the need for predictive tools to manage year-to-year variability in N demand (Puntel et al. 2019). EONR varied among years by 333 kg ha-1 in the NZ and 306 kg ha-1 in the SZ (Figure 4).   For example, in 2018, a year with 53% lower than normal rainfall from April 1 through July 31, obtained yields were 12723 ± 1349 kg ha-1 in the NZ and 9278 ± 1338 kg ha-1 in the SZ (Figure 2). The higher yield in the NZ is explained by the shallower water table in this zone which was advantageous in a low rainfall year. The simulated EONR reflected this difference in yield, with a higher EONR in the higher yielding NZ (206 kg ha-1) and lower EONR (67 kg ha-1) in the lower yielding SZ (Figure 4). In contrast, in a highly productive wet year such as 2019, the zones performed more similarly with EONR of 350 kg ha-1 in the NZ and 288 kg ha-1 in the SZ and simulated YEONR at 19,250 kg ha-1.
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Fig 4. Simulated economic optimum N rate using 20 years of historic weather scenarios for two management zones.
Conclusions
This study quantified the ability of a calibrated APSIM model to predict corn yield and EONR in two contrasting zones in a field in Nebraska. 10-year observed yield data revealed yields were 5% higher in the NZ than SZ. The model represented this difference well, with 20-year YEONR 4% higher for the NZ than SZ. The shallower water table at the NZ allowed for higher yields during dry years (i.e., 2018). The NZ was also more responsive to N, with a lower YN0 (14%) and higher EONR (41%). This is primarily explained by lower soil mineralization contributions in the NZ. The consistently higher EONR in the NZ demonstrates the site would benefit from zone-specific N applications.
The calibrated model captured well the variability in yields from 2010 to 2019 with a RRMSE of 10.2 for corn and 29.0 for soybean. While experimental year (2020) observed EONR was very similar between the zones, the large range of simulated EONR in the long-term analysis demonstrates the need for year-specific N management. The magnitude of difference in EONR varied between wet years and dry years; therefore, further analysis of weather factors influencing year-to-year EONR variability will be useful in recommending optimal N rate in a given year. 
The inclusion of the water table and tile drainage for each zone was critical in improving model accuracy. Additionally, obtaining more local precipitation data further improved the simulation. Models which do not account for the presence of water table may under predict yield, particularly in dry years. Tools that incorporate site-specific variables (i.e., presence and characteristics of water table) and incorporate precise, local weather are needed to better predict yield and accurately characterize N dynamics and EONR.
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