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Abstract. As more planters are equipped with the technology to vary seeding rate, evaluation of 
the within-field relationships between plant stand density (or population) and yield is needed. 
One aspect of this evaluation is determining how stand loss and yield are related to soil and 
landscape factors, and how these relationships vary with different weather conditions. 
Therefore, this research examined nine site-years of mapped corn yield, harvest population, and 
soil and landscape data obtained for a central Missouri, USA field. Mechanical population 
sensors collected data during combine harvesting and provided information at the same scale 
as yield monitor measurements. Results showed spatial population variability at harvest was 
large in all site-years, with populations as much as 40% lower than seeding rate. Random forest 
machine learning models were created to relate population and yield ratio (or per-plant yield) to 
landscape data, proximal soil sensor data, and data from laboratory analysis of grid soil 
samples, both for a single year and multiple years. Single-year harvest population modeled very 
well (test set R2 = 0.84), with most important predictors including landscape and proximal 
sensor variables as well as soil-test phosphorus. Yield ratio also modeled well (test set R2 = 
0.65), with the most important predictors being landscape properties. Direct modeling of multi-
year population and yield ratio was not successful; however, models representing the temporal 
standard deviation in spatial population and yield ratio were moderately successful (test set R2 = 
0.50-0.52), with the most important predictors being landscape variables, soil apparent electrical 
conductivity, soil organic matter, and cation exchange capacity. This case-study analysis 
showed the potential for explanatory modeling of spatial variability in harvest population and 
yield ratio, as well as their across-year temporal variability. Further research should investigate 
additional machine learning approaches more capable of modeling weather information in 
multiple-year analyses.  
Keywords.  Plant population, per-plant yield, corn, random forest, proximal soil sensors   



 

Proceedings of the 15th International Conference on Precision Agriculture 
June 26-29, 2022, Minneapolis, Minnesota, United States  

2 

Introduction 
Technology is available to allow producers to adjust seeding rates within fields. However, the 
question of what seeding rate should be used at each within-field location remains unanswered. 
Although some research has suggested that variable-rate seeding of corn may not be appropriate 
for typical Midwestern US corn growing conditions when the yield vs. population production 
function is not known (Bullock et al., 1998), others have noted that variable-rate seeding may 
provide a benefit in fields with significant areas of shallow topsoil (Barnhisel et al., 1996).  
Varying seeding rates may also be appropriate if the goal is to provide a uniform harvest 
population. Yield reductions due to lower than desired stands may be encountered in portions of 
fields subject to adverse emergence conditions and/or pest problems. If these areas of lower 
viability are temporally stable from year to year, or can be predicted prior to planting, seeding 
rates could be adjusted to compensate and achieve a desired harvest population across the field. 
In addition to the effects of mean population, increased variance in corn plant spacing due to 
planter inaccuracies or reduced emergence may also reduce yield (Nielsen, 1995). Nafziger 
(1996) reported that yields decreased due to missing plants, or “skips.” Adjacent plants 
compensated for 47% of yield loss due to a missing plant at 44,000 plants ha-1, but only for 19% 
of the loss at 74,000 plants ha-1. 
Sensing systems that provide spatially-dense datasets of corn plant population at harvest would 
provide information to help determine appropriate seeding rates. We developed such a sensing 
system, consisting of a spring-loaded rod attached to a rotary potentiometer, mounted in front of 
the gathering chains on the row dividers of the combine head (Birrell and Sudduth, 1995). During 
harvesting, the corn stalks caused the rod to rotate backward, increasing the voltage potential 
across the potentiometer. When the stalk released the rod, a sharp decrease in voltage occurred. 
The potentiometer output was fed through a low-pass filter into an analog derivative circuit and 
digital filter circuit to convert the sharp drop in potential into a pulse recorded by a digital counter. 
The effect of varying combine operating conditions on sensor accuracy was evaluated by Sudduth 
et al. (2000). Performance was encouraging under most conditions, although actual population 
was underestimated at high populations. When compared to hand counts obtained at harvest 
under a range of operating conditions, the sensors underestimated population on average by 
4.4% (r2=0.93) with a standard error of 3830 plants ha-1. However, when operating in test blocks 
without weak plants (and/or doubles) at speeds less than 2.5 m s-1, the average underestimation 
was reduced to 0.08% (r2=0.96) with a standard error of 2720 plants ha-1, or less than two plants 
in a 10-m transect. The underestimation and standard error of the predicted population was 
directly related to the stalk feed rate into the sensor. When the feedrate was restricted to less than 
9 plants s-1, the standard error was 1800 plants ha-1. This threshold represented a travel speed 
of 2.0 m s-1 at a population of 60,000 plants ha-1. 
A large-plot study employing these harvest population sensors noted a stronger relationship 
between yield and harvest population than between yield and seeding rate and documented large 
and spatially-variable stand losses before harvest (Bauer et al., 2000). Sudduth et al. (2004) 
examined field-scale harvest population and corn yield data, finding significant correlations in only 
5 of 8 site-years. Further, relationships of population and yield to soil and landscape properties 
were inconsistent and not often significant. In one site-year where improved instrumentation 
allowed quantifying individual plant spacings, there was an indication of stronger relationships 
between soil and landscape properties, population metrics, and yield.  
Collectively, these studies showed the potential of utilizing population sensors for guiding future 
variable-rate seeding, but additional data collection and the application of more complex analysis 
methods were needed. Therefore, the goal of this research was to examine relationships among 
harvest plant spacing, corn yield, and soil, landscape, and weather data for a case-study field in 
central Missouri, USA using machine learning techniques. Specific objectives were to relate (1) 
harvest population, (2) yield ratio (i.e., per-plant yield), and (3) multi-year variability in those two 
measures to measured soil, landscape, and weather.  
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Materials and Methods 
Data were obtained on a 36-ha research field in central Missouri for nine years when corn was 
grown: 1999, 2001, 2003, 2005, 2007, 2009, 2011, 2013, and 2016. Since 1991 this field has 
generally been farmed in a corn-soybean rotation. From 2004 to 2014, it was the site of a precision 
agriculture system study (Yost, et al. 2017), and during those years corn was only grown in the 
south 15 ha. Before and after, corn was planted in the entire 36-ha field.  

Data Collection and Processing 
Corn was harvested and yield data collected using a Gleaner R42 combine equipped with an 
AgLeader yield monitor and mechanical population sensors (Birrell and Sudduth, 1995) on each 
row. Yield datasets were cleaned using the Yield Editor 2 software tool (Sudduth and Drummond, 
2007; Sudduth et al., 2012) to remove erroneous observations. The remaining 1-s observations 
were exported from the software for further analysis, after correction to market moisture.  
For all site-years, “low speed” population data was processed on 1-s, providing the total number 
of plant detections for each row, along with GPS position and combine velocity. Then, the total 
number of plants and area covered for each row unit in 1-s was used to determine population for 
each row, as well as a mean population over all rows. Rarely, a sensor would malfunction and 
row data for any such interval was excluded from the mean population calculation. The 1-s mean 
populations were adjusted to compensate for plants miscounted at high feed rates (greater than 
6.5 plants s-1) using Eq. 1 developed by Sudduth et al. (2000): 
 Adjusted population = Raw population * (0.758 + 0.371 * Feedrate)                          (1) 
where: Feedrate = estimated number of plants s-1 entering each row of the combine head, as 
calculated from seeding rate and combine travel speed. 

For 2003 and later, population data were processed both using the 1-s approach described 
above and a high-speed data acquisition system that recorded the times of individual plant 
detections in each row. The six row units on the combine were scanned at a 2-kHz frequency, 
providing a resolution of 1 mm at 7.2 km h-1. Using these data, along with velocity information, the 
spacing of each plant from the previously detected plant on that row was calculated. The 
distribution of these spacings was well-defined and consisted of multiple approximately Gaussian 
distributions corresponding to correct spacings, single skips, double skips, and doubles (Fig. 1). 
Proc NLIN in SAS was used to fit overlapping Gaussian distributions for each of the spacing 
categories, and parameters were determined separately for each year. Observations were 
classified as belonging to the distribution with the maximum frequency at that spacing. 

 Fig. 1. Example 2013 plant spacing histogram (red bars), including overlapping Gaussian distributions defining doubles, 
plants at correct spacing, single skips, and double skips. 
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Other measurements used in the analysis included a standard suite of soil fertility measurements, 
proximal soil sensor data, and the landscape properties of slope, hillshade, and elevation. Grid 
soil samples were obtained to a 15-cm depth and analyzed for P, K, Ca, Mg, cation exchange 
capacity (CEC), organic matter (OM), and pH. Apparent soil electrical conductivity (ECa) was 
measured using a Veris 3100 instrument (Veris Technologies, Salina, KS, USA), providing 
shallow (ECsh; 0-0.3 m) and deep (ECdp; 0-1.0 m) data. Concurrently, a real time kinematic 
(RTK) GPS survey (vertical accuracy 3-5 cm) was conducted down the same transects to provide 
dense elevation data. Soil gamma radiation emissions were collected using an RSI-700 detector 
(Radiation Solutions Inc., Mississauga, ON, Canada) mounted to the front of a utility vehicle. Four 
measurements were available - total counts and counts of potassium uranium, and thorium. All 
proximal sensor data were obtained on an approximately 18 m transect spacing. 
Appropriate semivariograms were created for the ECa, soil sample, gamma and RTK elevation 
datasets, and the data were kriged to a common 10-m grid for each field. Slope and hillshade 
were derived from the Spatial Analysis Toolbox in ArcGIS Pro (ESRI, Redlands, CA, USA). Slope 
was calculated in percent and was derived in a 3 x 3 cell moving window. For hillshade, the 
azimuth was set to 315 degrees, and the light source altitude to 45 degrees. The hillshade 
estimates were coded with integers between 0 and 255, increasing from dark to light.  Population 
and yield data were aggregated to the same 10-m grid, rather than being kriged. This allowed the 
calculation of cell-specific standard deviations, as well as means, for both parameters. For the 
high-speed population data, the percentage of single skips, double skips, and large skips in each 
grid cell were also tabulated.  

Data Analysis 
A machine learning approach was applied in all modeling strategies that utilized the field-scale 
data. A random forest (RF) algorithm was chosen due to consistent performance and the ability 
for model interpretation. The RF models were fit and interpreted with the ‘randomForest’, 
‘randomForestExplainer’, and ‘ICEbox’ packages in R Statistical Software (R Core Team, 2022). 
The RF algorithm is a supervised ensemble learning technique that can be used for classification 
or regression problems. It uses a bagging technique, where the data are split and regression trees 
are created in parallel (Leo et al., 2021). Within each tree, the RF randomly selects features to 
create a prediction model. In our scenarios, the number of variables evaluated at each split in the 
decision tree (mtry) was set to 3. The final (bagged) model, in our scenario, was an average of 
500 separate regression trees. These trees were developed on 80% of the data and tested on 
the remaining 20%. The Pearson correlation coefficient (r), coefficient of determination (R2) and 
root mean squared error (RMSE) were calculated to interpret performance of the model in the 
training and testing datasets.  
Predictor significance was analyzed using the minimal tree depth distribution from the 
‘randomForestExplainer’ package in R. These values represent the average depth within the 
ensemble of decision trees that each variable was used to partition the dataset. Therefore, smaller 
values correlated to more significant variables, as they were used more often at shallow tree 
depths. In addition to the minimal depth of distribution, the individual conditional expectations 
(ICE) algorithm was applied to covariates of interest, and subsequent plots were created using 
the ‘ICEbox’ package in R (Goldstein et al., 2015). This allowed interpretation of how each variable 
was used in prediction by the RF model. Specifically, the ICE plots displayed the estimated 
conditional expectation curves, each of which reflected the predicted response as a function of 
the covariate of interest, conditional on the distribution of additional covariates. Because the curve 
intercepts varied, model predictions were “centered” in ICE plots for improved interpretation 
among the varying intercepts. In the centering process, each curve was “pinched” at the minimum 
observation of the given predictor variable of interest. In each plot, 10 percent of the entire training 
dataset was used for visualization.  
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Results and Discussion 
Harvest population as measured by the mechanical counters was 20% or more lower than the 
target seeding rate in all years. On a percentage basis, stand loss was lowest in 2011 and highest 
in 2013 (Table 1). Corn grain yield was only weakly related (r = 0.21) to stand loss.  
Fitted harvest spacing distributions (Fig. 2) show that the correct spacing (i.e., spacing at the peak 
of the distribution) for each year was around 0.2 m and illustrate the variable fraction of total 
spacings that were not correct (i.e., portions away from the main peak). For the seven years where 
high-speed data were available, the correct plant spacing from the histogram was within 0-7% 
(mean = 4.4%) of the desired spacing based on target seeding rate (Table 1), providing 
confidence in the validity of the distribution-fitting procedure.  

Table 1. Whole-field population statistics derived from low-speed data collection.  

Year Harvest Population 
plants ha-1 

Target Seeding Rate 
plants ha-1 

Stand Loss 
% 

Fraction at 
Correct Spacing 

Corn Yield 
Mg ha-1 

1999 47399 61775 23.3 -- 2.60 

2001 50300 63011 20.2 -- 6.06 

2003 44347 61775 28.2 0.64 2.13 

2005 46317 69188 33.1 0.60 4.52 

2007 54108 69188 21.8 0.80 4.05 

2009 52838 74130 28.7 0.67 9.52 

2011 53692 66717 19.5 0.84 3.88 

2013 46262 74130 37.6 0.57 5.71 

2016 57052 79072 27.8 0.72 8.99 

 

 
Fig. 2. Fitted plant spacing distributions for the seven years where high-speed harvest population data were available.  

Random Forest Estimation of 2016 Harvest Population 
The first RF model investigated the relationship of 2016 harvest population to landscape features, 
proximal soil sensor data (i.e., ECa and passive gamma), and lab-measured soil properties from 
30-m grid samples. All data within the field boundary (n = 2485) were used in this analysis to 
maximize the number of observations available for training the model. Test set results were very 
good (R2 = 0.84; Fig. 3). Importance of model parameters was investigated with a tree depth 
distribution plot (Fig. 4), which showed that elevation, hillshade (a landform parameter that 
incorporates slope and aspect), soil-test phosphorus, Gamma sensor total counts, and shallow 
ECa data were the most important variables describing variation in harvest population. Elevation 
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differences in this field are important for runoff and run-on of water, and therefore soil moisture 
These in turn may affect germination and emergence, along with soil temperature differences 
represented by hillshade. Phosphorus may have been important due to its impact on seedling 
vigor, and passive gamma and ECa data reflect soil texture, which may affect planter performance 
and seed-soil contact. 

 
Fig.3. Results of random forest model estimating 2016 harvest population as a function of soil and landscape variables.  

 
Fig. 4. Mean (in black text) and distribution of minimum depth in random forest model estimating 2016 harvest population 

based on soil and landscape variables. A smaller depth indicates a more influential variable.   

Random Forest Estimation of 2016 Yield Ratio 
A second RF model estimated yield ratio (i.e., per-plant yield), using the same suite of predictor 
variables as above. Fewer observations were available in this analysis (n = 1483) as the dataset 
was trimmed to eliminate edge effects due to compacted headlands and field-edge tree lines. Two 
nitrogen test strips were also removed because they were not managed the same as the rest of 
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the field. Results were good (R2 = 0.65; Fig. 5), although not as good as harvest population 
estimates. The tree depth distribution plot (Fig. 6) showed that the top two parameters were the 
same as for population estimates, elevation and hillshade, reinforcing the importance of soil water 
movement and temperature differences in affecting yield on claypan soil landscapes. Other top 
parameters were generally related to soil texture and depth of topsoil above the subsurface 
claypan layer, important factors in spatially-variable plant water availability. Texture-related 
parameters may have also affected planter performance; for example, poor row closure or 
excessive downforce requirements.  

 
Fig. 5. Results of random forest model estimating 2016 yield ratio as a function of soil and landscape variables. 

 
Fig. 6. Mean (in black text) and distribution of minimum depth in random forest model estimating 2016 yield ratio (i.e., per-

plant yield) based on soil and landscape variables. A smaller depth indicates a more influential variable.   
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Random Forest Analysis Across Multiple Years 
Temporal variation in harvest population, yield, and yield ratio were examined for the south 15-ha 
of the field where seven years of data were available: 2003, 2005, 2007, 2009, 2011, 2013, and 
2016. Particularly for yield and yield ratio, between-year variability was large in comparison to 
within-year spatial variability (Fig. 7). Assuming that between-year variability was primarily due to 
weather differences, we attempted to fit RF models across years including growing-season 
precipitation data, with poor results (data not shown). We hypothesized that a primary reason for 
the poor fit was likely the small number of observations in the temporal domain (n = 7). 

 
Fig. 7. Variability in harvest population, corn yield, and yield ratio across seven years and, as represented by individual 

box-and-whisker plots, across 1432 10-m grids in the south 15-ha of the experimental field.  

In another approach to examining temporal variation, mapped across-year standard deviations 
(SD) in yield, population, and yield ratio provided strong evidence of spatial patterns. For each 
variable, SD were > 50% higher in relatively large (> 1000 m2) field areas than in other areas of 
similar size (Fig. 8). We constructed RF models to investigate the relationship of population SD 
and yield ratio SD to soil and landscape variables. Predictors included ECa, gamma sensor, and 
landscape data, along with lab-measured parameters that were expected to be more temporally 
stable, CEC and OM. Results were of moderate accuracy (R2 = 0.50 – 0.52; Fig. 9), indicating a 
potential for identifying field areas with higher or lower temporal variability based on relatively 
static soil and landscape variables. Based on the minimum depth distribution plots, the important 
predictors included landscape variables, ECa, SOM, and CEC. In both cases, the top two 
predictors represented landscape variation (hillshade or elevation) and indicators of near-surface 
soil texture (ECsh or CEC). 
 

Fig. 8. Standard deviation (SD) of harvest population (left) and SD of yield ratio (right) for the south 15 ha of the case-study 
field, calculated across seven corn years from 2003 to 2016. 
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Fig. 9. Results of random forest models estimating 2003-2016 standard deviation in population (left) and standard 

deviation in yield ratio (right) as a function of soil and landscape variables. 

The ICE plots for population SD and yield ratio SD provided further insight into the relative effects 
of top predictors. Fig. 10 (top) shows the effect of hillshade and ECsh on population SD. Higher 
population SD values were found at high hillshade values, or the west-facing areas of the field. 
This could indicate that the importance of solar warming in germination varied from year to year 
depending on temperature and/or soil moisture conditions at the time of planting. Lower ECsh 
values tended to increase population SD. Perhaps the inter-annual variation in soil water content, 
creating variable emergence issues due to slotting or surface crusting was higher in these areas.  
Areas of higher ECsh might experience these problems on a more regular basis, and therefore 
exhibit a relatively lower SD. Fig. 10 (bottom) shows the combined effect of elevation and ECsh 
on yield ratio SD. Yield ratio was less variable across years in the higher-elevation areas, likely 
due to less variation in soil water than in the lowest part of the landscape where runoff could tend 
to collect. At higher elevations, higher yield ratio SD was generally associated with higher ECsh. 
Areas of claypan soil fields with higher ECsh can vary greatly in yield depending on the timeliness 
of rainfall, due to the lower plant-availalbe water holding capacity associated with high clay.  

Conclusion  
Yield, harvest population, and soil and landscape data were collected for nine corn production 
years on a central Missouri, USA research field from 1999 to 2016. For seven years, high-speed 
data collection enabled measurement of individual plant spacing. Spatial population variability 
was large in all site-years, and harvest populations were between 20 and 40% lower than seeding 
rate. The fraction of plants at correct spacing (i.e., not doubles or skips) ranged from 57 to 84%. 
Using random forest machine learning models to examine the effects of soil and landscape 
properties on the dependent variables of harvest population and yield ratio, we found that: 

• Single-year (2016) population was very well-estimated (R2 = 0.84), with the most important 
predictors in the model being landscape and proximal sensor variables as well as soil-test 
phosphorus. 

• Single-year (2016) yield ratio was well-estimated (R2 = 0.65), with the most important 
predictors being landscape variables. 

• Multiple-year models incorporating precipitation information in the predictor dataset were 
not successful in modeling population or harvest ratio. Additional weather variables and/or 
model structures that better deal with variables with a small number of observations (i.e., 
by year) should be evaluated. 
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Fig. 10. Individual conditional expectation (ICE) plots for standard deviation (SD) of population (top) and SD of yield ratio 
(bottom). The top plot shows expected variation in population SD as a function of variation in hillshade (horizontal axis) 
and ECsh (red vs. blue colors). The bottom plot shows expected variation in yield ratio SD as a function of variation in 

elevation (horizontal axis) and ECsh (red vs. blue). 

• Multiple year models estimating the temporal SD of population and yield ratio were 
moderately successful (set R2 = 0.50-0.52), with the most important predictors being 
landscape variables, soil apparent electrical conductivity, soil organic matter, and CEC. 

Overall, this case-study analysis showed the potential for explanatory modeling of spatial 
variability in harvest population and yield ratio, as well as their across-year temporal variability. 
Further research should investigate extending this analysis to other field-years and incorporate 
additional population metrics (e.g., fraction at correct spacing) into the machine learning analysis. 
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