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Abstract.  
Crop yield estimation, an important managerial tool for vineyard managers, plays a crucial role in 
planning pre/post-harvest operations to achieve desired yield and improve efficiency of various 
field operations. Although various technological approaches have been developed in the past for 
automated yield estimation in wine grapes, challenges such as cost and complexity of the 
technology, need of higher technical expertise for their operation and insufficient accuracy have 
caused major concerns for growers to practically adopt such technologies. Lag phase is an 
important phenological stage in wine grape production and accurate prediction/detection of lag 
phase is vital for crop-estimation and overall vineyard management. The sampling completed in 
this period can help in obtaining accurate yield prediction due to predictable change in berry 
weight after lag-phase. In this study, a berry growth tracking system was developed and 
investigated to properly identify the lag phase in grapes, which will be implemented as a feature 
in an existing smartphone App being developed at Washington State University. The berries in 
the cluster were detected with the help of Mask-RCNN with Mean Average Precision value of 0.9. 
With the help of berry growth trend plot, the lag-phase for the wine grapes was estimated to start 
on 22 July. Since this model will use cellphone images for estimation, it will be simple and low-
cost solution for offering user-friendly and convenient sensing system for lag phase detection in 
wine grapes which can be used for crop estimation in future.   
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1.  Introduction 
Yield estimation is a valuable tool for crop management in vineyards to meet quality 

targets, efficiently handle the grapes, and manage labor force and equipment requirement ahead 
of the harvest season. Various approaches for automated yield estimation have been explored 
using image processing, machine learning and deep learning techniques. Nuske et al. (2014) and 
Liu et al. (2013) used various image processing techniques for yield estimation in vineyards. In 
recent years, machine learning and deep-learning techniques have been widely adopted in 
agricultural research because of their ability to produce more accurate prediction and detection 
results by processing large number of data and extracting features facilitated by increased 
computational capability. Deep-learning algorithms, in particular, can remove the necessity to 
manually extract feature from raw data and can be more efficient and robust when trained properly 
with large dataset with sufficient variability in samples.  

Different Convolutional Neural Network-based deep-learning models such YOLO, used by 
Sozzi et al., (2022), Mask-RCNN, used by Ghiani et al.(2021) and Santos et al. (2020), have been 
frequently used in detecting and counting grape clusters and berries. Specifically, a Grape Berries 
Counting Network (GBC-Net) was created for grape berry counting from the smartphone images 
by Coviello et al. (2020). Grape cluster detection using 3D images have also been explored. 
Kurtser et al., (2020) used 3D images from Intel Realsense D435 depth camera and Santos et 
al., (2017) used 3-Demeter Capture methodology to reconstruct 3D images from the RGB images 
from webcam. Mohimont et al.(2021) used LIDAR technology for cluster segmentation for the 
yield estimation. These techniques show a good promise for berry and berry cluster detection and 
counting in later part of the growing season. However, to be useful for crop management over the 
growing season as well as harvest and post-harvest management, early season crop estimation 
is essential. Because of the physiological characteristics of grape growth, berry cluster and berry 
detection, counting and sizing during lag phase could lead to accurate crop estimation during 
harvest. To the best of our knowledge, neither automated crop estimation using lag phase nor 
automated detection of lag-phase in grapes using the images have been studied.  
Among various methods for yield estimation, lag phase method is used for many grape varieties. 
Lag-phase is the stage of berry development in vineyards when little or no growth takes place in 
the weight and volume of berry. It is supposed that the grapes in this stage are half their final 
weight (Dami & Sabbatini, 2012). Lag-phase method uses the physiological information of the 
berries during lag-phase to estimate the final yield based on samples collected. Lag-phase may 
last from one week to a month, depending on grape varieties, climate, and location. From their 
appearances, it is difficult to know whether the grape is in lag-phase or has already started 
ripening (i.e., Veraison stage). The hardness of seeds is one indicator of lag-phase and therefore, 
growers usually determine if the berries are in lag-phase by splitting the berries, cutting the seed 
and evaluating the resistance to the knife while cutting. This technique of lag-phase determination 
is tedious and completely dependent on the expert eyes. Our method solves this problem by 
predicting the lag-phase in berries by using images acquired with smart phones. Our main idea 
is to eliminate the need to manually cut open the berries to determine if the berries are in lag 
phase and provide automatic prediction of lag phase period through the smartphone app.  
In this study, lag-phase in grapes is detected and a prediction model developed so that it can be 
used for crop-load estimation later. The growth of berries was tracked in selected few clusters 
and behavior of berry growth was analyzed throughout the growing season. When the growth of 
the berries is represented in graphical form, we can ascertain which period of the growth curve 
denotes lag-phase. This information will be then used to correct lag-phase period prediction when 
crop-load estimation can be performed. This paper discusses various techniques that has been 
used for berry detection and berry diameter measurement from simple RGB images obtained 
from smartphone.  The main objective of this study was to observe the growth trend for the lag-
phase detection in wine grapes. When successful, this technology could be implemented in the 
Smartphone application and made available commercially to growers for very small cost as it runs 
on users’ existing hardware (e.g., compatible smartphones). Because smartphones and tablets 
are ubiquitous and pre-equipped with necessary sensors such as cameras and GPS, an App-



Proceedings of the 15th International Conference on Precision Agriculture 
June 26-29, 2022, Minneapolis, Minnesota, United States  

3 

based, low-cost approach has a great potential for in-hand and near-real time crop-load 
estimation.  

 

 
           Figure 1. Grape Berry Growth representation (Deloire, 2010) 

2. Materials and Methods 

2.1. Dataset  
In this study, RGB images of grapevine canopies were acquired using smartphones over a 
growing season that included lag-phase. The images were used for detecting berries and 
estimating their sizes over time to develop a temporal growth pattern for each berry. Altogether 
500 images (25 images per cluster) were collected throughout the growing season from July-
September of 2021. For the experiment, 20 grape clusters from 20 different vines (10 from 
Chardonnay (white) variety and 10 from Merlot (red) variety) were chosen. A portion of measuring 
tape was also captured in an image next to each cluster, which was used as a calibration 
reference for estimating berry size (diameter). This experiment was performed in 20 different 
vines from 4 different rows (5 vines per row) at a research farm of Washington State University 
(WSU), Prosser, WA. Similarly, for the berry detection model, images were captured using 
Samsung Galaxy S9 smartphone in 2019 during growing season from the same vineyard as lag-
phase. 
For training a berry detection model (discussed later), a total of 30 images were acquired, each 
consisting of several grape clusters. Out of 30 images, 24 were used for training and 6 for the 
validation. Altogether 1971 berries were annotated from 30 different clusters. The network was 
provided with 1489 training samples and 482 validation samples. For evaluating performance of 
the diameter estimating algorithm, ground truth data was also collected. Diameters of 10 berries 
over 2 separate days were measured using vernier calipers. 

2.2.  Berry Segmentation 
For counting berries, it is essential to first detect and isolate the berry clusters within the grape 
canopy images. Therefore, berries and the reference tape were first segmented out from an image 
by removing the background using an algorithm called GrabCut (Figure 2). GrabCut (Rother et 
al., 2004) is an interactive segmentation process which segments the object inside a user defined 
rectangle in an image (Figure 3). The pixels outside the rectangle are treated as background 
pixels and inside as foreground pixels. Then all the pixels in the image are linked to the either 



Proceedings of the 15th International Conference on Precision Agriculture 
June 26-29, 2022, Minneapolis, Minnesota, United States  

4 

label (foreground or background) based on the similarity of color distribution of each pixel to the 
labels. The area in the rectangle is defined as a color distribution model using Gaussian Mixture 
Model (GMM), and each pixel is associated to the labels where neighboring pixels of similar color 
distribution have same label. In our case, a rectangle was created to include measuring tape and 
the clusters and was drawn selectively to constitute a desired foreground within an image (Figure 
3). This caused all other berries and the background to be removed from the image leaving only 
a reference object and the berries being tracked.  

 
Figure 2. A workflow diagram for image segmentation based on GrabCut algorithm. 

 

 
Segmented images obtained with GrabCut algorithm were used as input to the berry detection 
model that was implemented using Mask-R-CNN. Mask-R-CNN (He et al., 2020) is deep neural 
network aimed to solve instance segmentation problem which takes an image as an input, 
identifies objects of interest in the images and provides their bounding boxes, classes, and masks. 
It is simple to train, flexible, and general framework for instant segmentation tasks. Unlike 
semantic segmentation, where each pixel is classified into a fixed set of categories without 
separating the instances, Mask-RCNN segments the image at pixel level and separates each 
detected object in an image as a single entity. This approach largely closes the gap between 
object detection and the more challenging instance segmentation task. The Mask-R-CNN 
algorithm consists of the following modules:  

Figure 3 Example results showing the segmentation of grape cluster and 
the reference measuring tape using GrabCut algorithm. 
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• Region Propose Network: ResNet101 was used as the backbone network which consists 
of 4 of convolutional layers for generating final feature maps. A Region Proposal Network 
(RPN) was used that scanned over the output of ResNet101 and located regions where 
the objects might be present. The output of RPN is objectness score and bounding box 
coordinates.  

• Mask Generation: A mask containing spatial information of the object is created as the 
next step. The next convolutional network takes regions of interest as an input and makes 
use of Fully Connected Network to generate a mask.  

 
In our case, the network was trained to detect only one class of object: ’berry’. For this model, 
each berry was labelled using circular annotation. VGG Image Annotator from Visual Geometry 
Group was used as a labelling tool. Mask R-CNN was used in our case because only object 
detection is not sufficient, the exact boundaries and shape of the berries are required for accurate 
size estimation. Segmented images containing only cluster and reference were used as an input 
in order to remove other clusters that might be present in the periphery. In this work, Mask R-
CNN was applied to achieve two specific goals necessary for observing the growth trend of 
berries, which was essential to detect lag-phase. 

1. Individual berry detection for individual diameter calculation 
2. Multiple berries from the cluster detection for average diameter calculation. 

2.3 Berry Sizing: 
Berry size estimation was done next for the berry growth observation. After detecting the berries 
using Mask-RCNN, actual diameter of the berries was estimated in millimeters(mm) using the 
scale of measuring tape used as reference object for calibration. Each segmented berry from 
Mask-RCNN came with its own mask and bounding boxes. The height and width of bounding 
boxes were calculated, and dimension of the box with maximum value was chosen as the 
diameter of berry. Average berry diameter was estimated by dividing sum of diameters by total 
number of region of interests.  Diameter calculation was completed using following steps (Figure 
5): 

1. Edge detection algorithm was used to detect the contours of the measuring tape located 
at the left side of the cluster (Figure 3).  

2. A bounding box was drawn around the detected contour of the measuring tape whose 
dimensions in pixels (object width) were calculated using Euclidean distance formula. 

3. Pixels per mm, in this case (pixels per millimeters) was calculated using 
Pixels per mm= object width/known width (in mm) 

4. Average berry diameter (in pixels) obtained from Mask-RCNN model was used to 
estimate the actual average diameter of the berries. 

Average berry diameter= diameter values from Mask-RCNN/ pixels per mm 

2.4 Berry Growth Trend: 

Images of berries were collected from July to September, at an interval of 3-5 days. Altogether, 
250 images (25 images for each of the 10 clusters) were processed for average diameter 
calculation and tracking berries over time. The individual (Figure 6(a), (b) and 7(a), (b)) and 
average berry diameters (Figure 6(c) and 7(c)) was plotted against time to observe the growth 
pattern. The growth pattern was observed for both individual berries as well as for a whole cluster. 

 
• Growth Pattern of Individual Berries: 

A total of 10 berries were chosen randomly from various clusters. The berry sizes were 
then plotted against the dates when the images were taken to track the growth of the 
berries. A polynomial curve was fitted on the scattered plot of berry size to represent the 
growth trend. Figure 4(a) shows an example of individual berry segmentation and tracking. 
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In this example, three berries from one cluster were tracked throughout the growing 
season and their diameter estimated. 

 
 
 

Figure 4. (a) Example of individual berry detection using a Mask-R-CNN model. (b) 
Multiple berry detection within a berry cluster using a Mask-R-CNN model. 

• Average size of berries within a cluster: 
In practice, growers measure the average diameter of randomly selected berry samples 
from individual clusters to detect lag-phase. Following a similar approach, average 
diameter of detected berries in individual clusters was estimated using the results from 
Mask-R-CNN-based berry detection described above. Figure 4(b) shows an example 
cluster with estimated diameter of all the detected berries, which were tracked over the 
growing season.  
 
 

(a) (b) 
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Figure 5. Flow Diagram showing calculation of Average diameter of berries. 

3. Results and Discussion 
As mentioned before, the berry sizing (diameter estimation) algorithm was applied to 10 

clusters of grapes from Merlot and Chardonnay varieties. The Mask-RCNN algorithm detected 
the berries with Mean Average Precision (mAP) of 0.9 and Mean Average Recall (mAR) of 0.972. 
On the detected berries, two approaches discussed in section 2.4 were applied to analyze growth 
trend. From each cluster, 1-2 berries were chosen and tracked throughout the growing season 
(July-September 2021). Based on a trial and error process, a 4th order polynomial was found to 
provide a good fit to represent berry growth over time, which is, qualitatively, similar to the actual 
growth trend reported for wine grapes (Deloire, 2010). Qualitatively, it is seen from the trend 
diagram (Figure 6(a), (b) and 7(a), (b)) that the growth trend of individual berries of the same 
cluster showed similar growth patterns. 
Similar to individual berries, a 4th order polynomial was also found to be a good fit for representing 
the growth trend of average diameter of berries within individual clusters over time as shown in 
(Figure 6(c) and 7(c)).   
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       (c) 

Figure 6. (a) and (b) Growth trend of individual berries from an example cluster, (c) 
Growth trend of the same example cluster represented by the average berry diameter. 
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  (c) 
 
 

 
Figure 7. (a) and (b) Growth trend of individual berries from an example cluster, (c) 

Growth trend of the same example cluster represented by the average berry diameter. 

From Figures 6 and 7, we can see that both individual berries and clusters follow the same growth 
trend. These trends show there was a steady growth of berries for some time before a stunted 
growth appeared for about 3 weeks which was then followed by another rapid growth. As shown 
in Figure 1, berries go through a fast growth in the beginning after the fruit set due to rapid cell 
division. After 4-5 weeks, the cell division stops, seed embryos form and grow. This stage is called 
lag phase where growth is little to none. At the beginning of lag-phase stage, berries have reached 
half of their final size and when the lag-phase is over, cells start to accumulate acids and tannins 
leading to another rapid berry growth stage called Veraison. These stages of berry growth in wine 
grapes have been clearly detected by the polynomial trend models fitted in this study.   
The berry sizing algorithm was applied for all 10 of the clusters and growth trend was observed. 
In Figure 8, we can see that there is a general trend of steady growth of berries diameter till mid-
July, stops for certain duration and resumes at around early August. Average berry size on each 
date for all the clusters was also calculated, plotted and first derivative of that plot was calculated 
(Figure 9). When the change in berry diameter per day was plotted against time, as shown in 
Figure 9, the change in diameter tended to be zero approximately on 22 July suggesting that the 
grapes entered lag-phase on this date. The lag-phase period from the same vines was observed 
to be between 24 July to 10 August as per the ground truth data. These grapes were later 
harvested in September. As discussed earlier, since the berries are half of their final weight in 
lag-phase, the correct estimation of lag-phase period can be used for crop estimation almost 1 
month before harvest. 

 
Figure 8. Comparison of polynomial models of 10 sample clusters. All the clusters show 

similar growth trend and are fitted with fourth order polynomial equation. 
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Figure 9. Comparison of change in berry size to dates of measurements. 

Berry diameter estimation from reference object was also used on 20 berries and was compared 
to the ground truth (berry diameters) collected. The Root Mean Square Error (RMSE) was 
calculated to be 1.086mm and the R squared (R2) value was 0.046. Even though berry growth 
trend showed overall increase in diameter, the fluctuation in measurement at various dates should 
not have occurred. This may be due to non-uniform placement of the reference object, i.e., error 
during data acquisition when the measuring tape was not in the same plane as the grape berry 
being measured. Due to 3-D nature of the grape cluster, only the berries on the topmost surface 
should be used for accurate measurement, adjacent to which the reference can be placed. For 
future work, a checkered board will be used for berry size reference during the image acquisition 
instead of a measuring tape for more robust and scientific size estimation. Also, a fixed plane for 
both the grape clusters and reference object could be used for image acquisition.  

4.Conclusion and Future works 

Various image processing techniques including image pre-processing, image segmentation, and 
object detection (based on deep learning) were used to delineate berries in berry clusters and 
estimate their size (diameter) in physical units. Estimation of berry size was then used to observe 
the growth trend for lag-phase detection.  Altogether 10 clusters and 1-2 berries within each 
cluster were selected randomly, and their growth in size was tracked throughout the season to 
observe the growth trend/pattern. The results from the research showed that lag-phase started 
approximately on 22 July which was similar to real-lag phase start date (24 July). The growth 
trend obtained automatically with the proposed technique resembled well, qualitatively, with the 
growth trend reported in the past through horticultural studies and manual measurement. Some 
discrepancies were observed in berry diameter measurement which was caused due to slight 
misalignment of berry clusters with the reference. When the berry sizing algorithm was compared 
with the ground truth measurements, RMSE of 1.086mm and the R2 of 0.046 was calculated. For 
improving the accuracy of berry sizing, calibration reference could be better positioned against 
the target berries. In the future, a model can be developed using the proposed approach which 
can help approximate the date when the lag-phase will occur in the grapes, which can be a 



Proceedings of the 15th International Conference on Precision Agriculture 
June 26-29, 2022, Minneapolis, Minnesota, United States  

11 

practical tool for growers for crop-estimation in wine grapes.   
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