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Abstract 
Robotic systems in agriculture (agrobots) have become popular in the last few years. They 
represent an opportunity to make food production more efficient, especially when coupled with 
technologies such as the Internet of Things and Big Data. Agrobots bring many advantages to 
farm operations: they can reduce human fatigue and work-related accidents. In contrast, their 
large-scale diffusion is today limited by a lack of clarity and exhaustiveness in the regulatory 
framework that is intrinsically tied with ethical and legal issues concerning the management of 
agrobots and information. Existing legislation places obligations, like machine registration and 
human supervision in operations, with several issues to be addressed. They concern, to name 
but a few, the legal responsibility, machine and human data management, privacy issues, and 
contractual limitations.  
In this context, obtaining a clear taxonomy of agrobots would facilitate addressing management 
and legal issues, opening up the possibility of setting specific policies and market strategies 
based on recurring characteristics and features. This study aims to pursue an exhaustive 
classification of the various types of agrobots available today. An observational survey method 
involved a web search of agrobots followed by contact by phone with agrobot producer 
company representatives resulted in a set of qualitative variables accounting for criteria 
describing the scope of agrobot operation. The study reports homogeneous groups (clusters) of 
agrobots characterized by minimum classification redundancy.  
This classification provides useful information for the refinement of ad-hoc legislative supports 
accounting for the various types of agrobots, the promotion of market segmentation practices by 
technological providers, and the creation of ad-hoc fleet management strategies in the farm 
context. 
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1. Introduction 
The use of robotic solutions in agriculture heavily increased in recent years and represents an 
opportunity to improve crop production 1–3. To date, robotics has been implemented with success 
in open field and indoor applications; among the various functions, agricultural robots can carry 
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out weeding, fertilization, harvest, and other agricultural operations more effectively and 
efficiently, allowing economic and environmental benefits to be achieved4. The growing trend also 
involved automatic technologies for dairy and livestock, with the adoption of automatic milking 
systems, robots for feeding, and technologies for manure management becoming key success 
factors in many farms 5–7. Agricultural robots performing water irrigation, spraying, pruning, 
harvesting, monitoring, and accounting for land preparation can automate a large piece of 
agricultural production, especially those slow and repetitive tasks for farmers, reducing human 
workload and optimizing times and costs3,8. Being able to carry out hard physical tasks hitherto 
covered by farmers and potentially ensuring night work cycles, these systems accompany many 
advantages, such as reducing work-related accidents and the autonomous conduction of 
potentially dangerous operations for human health like pesticide application9,10.  
To date, a formal definition for the term “agricultural robot” or “agrobot” is missing, and at the 
same time, the features of robots performing agricultural operations are scarcely recognized by 
jurisdictions. Recently, Lowenberg-DeBoer et al. proposed to define the field crop robot as “a 
mobile, autonomous, decision making, mechatronic device that accomplishes crop production 
tasks [...] under human supervision, but without direct human labor”11. Other authors have 
proposed to define agricultural robots as programmable machines performing various agricultural 
tasks, such as cultivation, transplanting, spraying, and selective harvesting12. These definitions 
indicate that agricultural robots are a set of heterogeneous systems composed of various 
technologies designed for a large variety of uses in the broad domains of the agri-food sector.  
Notwithstanding their various features and benefits, the large-scale diffusion of agricultural robots 
is also limited today by a number of barriers. Current challenges for the commercial viability of 
robots span from technical factors concerning the degree of autonomous operation to financial 
reasons since technology providers hardly raise revenues during the initial years of the activity13. 
In addition, often, farmers who are the potential adopters lack sufficient skills and expertise 
concerning ICT and data analysis.  
Also, the development of the autonomous equipment sector heavily depends on the legal and 
regulatory framework. Currently, many European jurisdictions lack exhaustiveness concerning 
the use and management of several types of robots14. Uncertainty is related to the possibility that 
robots will eventually prove to be better than humans at important tasks and, as a consequence, 
governments may come to be subject to ethical and political pressure to forbid agricultural tasks 
to humans15. Another point is the extent and nature of the contracts between technology providers 
and final users concerning data management. In theory, the collection, storage, and use of the 
agricultural data collected can only take place after the originator of the data has granted his 
consent through a contractual agreement, and the data originator can be either the farmer, the 
provider, or the contractor, depending on the contract terms and the nature of technology (e.g., 
firmware, open source). In addition to this, obligations by farmers when they use robots may be 
susceptible to modification by regulation16, while issues concerning civil responsibility and privacy 
still have to be comprehensively addressed. Given these considerations, it is expected that 
governments will become more accommodative in the future, supporting innovative companies 
and farmers with tax reduction or subsidy schemes to boost the adoption of the technology. 
To date, a clear and agreed classification of the various types of agricultural robots is missing. 
Aimed at bridging this gap, the main objective of this study is to obtain a robot classification based 
on observable features to better define the regulatory aspects and facilitate the production of ad-
hoc legislative instruments, and provide a comprehensive framework for technology users and 
developers to allow market segmentation practices. 

2. Materials and Methods 
The survey method has involved a web search of robots and systems, which were described with 
qualitative variables based on specific criteria describing their usage in farms. The web search 
was performed by using the search tags “agricultural robots”, “agrobot”, “agricultural robot 
companies”, as well as queries including the various agricultural activities, such as “weeding 
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robot” and “harvest robot”. Four inclusion criteria were considered to guarantee an acceptable 
level of information quality (Table 1). 

Table 1. Inclusion criteria of sources 
Inclusion criteria Rationale 
The source reported exhaustive textual or 
numerical descriptions. 

Quantitative or qualitative information is necessary to make comparisons 
between technologies. 

The described technology was able to 
perform operations autonomously. 

Systems performing tasks not autonomously are out of the scope of this study. 

The source provided information was not 
conditioned by site subscription. 

Most companies avoided to spread information for non-commercial purposes. 

The source reported information concerning 
working technology at least at TRL 7. 

System prototypes not demonstrated in an operational environment are 
considered less relevant to producing insights on current state-of-the-art 
technology. 

Following this procedure, several technologies were assessed for eligibility. A total of 246 items 
were finally identified and included in the analysis. Data were input in an Excel file using 35 
descriptive variables (in addition to the manufacturing company, company location, brand(s), 
website, and robot name information):  

• production domain: agriculture “AGR”, livestock “LIV”; 

• activity environment: outdoor “OUT”, indoor, “IN”; 

• place of activity: open field “FIELD”, industrial setting “IND”, stable “STA”;  

• type of machine: single-purpose robot “SINGLE”, drone “DRO”, multi-task robot “MULT”;  

• type of moving: fixed “FIXED”, self-propelled “SELFP”, pulled “PULLED”, on-track 
“TRACK”;  

• activity carried out: crop monitoring “CROP_M”, logistic operations “LOGI”, irrigation 
“WATER”, chemical weeding “WEED_C”, mechanical weeding “WEED_M”, crop defence 
“DEF”, fertilisation “FERT”, harvesting “HARV”, pruning “PRUN”, sowing “SOW”, 
harrowing “HARROW”, animal washing “ANIM_WASH”, animal feed “ANIM_FEED”, 
milking “MILK”, grafting “GRAFT”, soil mixing “SOIL_MIX”, tray filling or washing “TRAY”; 

• energy supply: diesel/petrol fuel “FUEL”, hybrid or battery “HYB”, power cable “POWC”, 
attached to tractor “TRACT”. 

The procedure included the following steps: factor analysis, hierarchical, and k-means clustering.  

2.1 Factor analysis 
Given the relatively high ratio between the number of observations and the number of variables 
(~7:1), factor analysis was applied in order to express data variability with the least but significant 
number of factors. Tetrachoric correlation was used to measure the correlation between the 35 
binary variables: a latent bivariate normal distribution for each pair of binary variables was 
assumed, and the tetrachoric correlation coefficient rho was estimated. The correlation matrix 
thus obtained was taken as an input to perform the factor analysis, with the aim to reduce the 
number of variables into fewer factors accounting for a sufficient level of variance. Keeping 
enough factors to account for at least 70% of the variance was the criterion used to determine the 
number of factors. The varimax factor structure was used as rotation algorithm. Tetrachoric 
correlation was calculated using the package psych available for R18. 

2.2 Hierarchical clustering 
Hierarchical clustering was used to assess the number of clusters. The resulting dendrogram 
helped visualize the distances between the different numbers of clusters and the cluster(s) 
characterized by the minimum number of items. Hierarchical clustering was performed in R using 
the function hclust. 
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2.3 K-means clustering 
K-means clustering19 was performed based on extracted factors and the resulting factor scores. 
The cluster centers (i.e., medioids) of the clusters identified with the hclust function were used as 
starting points of k-means clustering. One-way ANOVA and Tukey’s HSD tests were run to 
explore possible differences among clusters and perform multiple pairwise-comparisons. 

3. Results 
The distribution of the 35 binary variables describing the 246 agrobots identified and included in 
the analysis is shown in Table 2. The dataset is freely available at: 
http://docs.google.com/spreadsheets/d/1ZnWBZdAiEoJNxt6VTslmiwHGfAO0U4kRkRgxxZXd6a
4/edit#gid=0. 

Table 2. Distribution of binary variables across the collected items 
Domain Variable Label  Distribution  
Production context Agriculture AGR 79.7% 
 Livestock LIV 20.3% 
Working environment Indoor IN 61.8% 
 Outdoor OUT 42.3% 
Place of activity Open field FIELD 40.2% 
 Industry IND 40.2% 
 Stable STA 20.3% 
Type of machine Single-purpose SINGLE 84.1% 
 Drone DRO 10.2% 
 Multi-purpose MULT 6.5% 
Type of moving Fixed FIXED 34.1% 
 Self-propelled  SELFP 53.3% 
 Pulled  PULLED 3.7% 
 On-Track TRACK 8.9% 
Type of activity Crop monitoring CROP_M 18.3% 
 Logistic operations  LOGI 11.4% 
 Irrigation  WATER 4.9% 
 Chemical weeding WEED_C 17.5% 
 Mechanical weeding WEED_M 13.4% 
 Crop defence DEF 4.5% 
 Fertilisation FERT 2.8% 
 Harvesting HARV 10.6% 
 Pruning PRUN 0.4% 
 Sowing  SOW 12.2% 
 Harrowing HARR 2.4% 
 Animal washing ANIM_WASH 5.3% 
 Animal feed ANIM_FEED 10.2% 
 Milking  MILK 4.9% 
 Grafting GRAFT 2.8% 
 Soil mixing SOIL_MIX 2.8% 
 Tray filling/washing TRAY 8.1% 
Type of energy supply Diesel/petrol FUEL 8.1% 
 Hybrid/battery HYB 43.5% 
 Power cable POWC 44.7% 
 Attached to tractor TRACT 3.7% 

Seven factors, accounting for the most significant robot features, were identified (Figure 2). The 
relative cumulative variance associated with the factors yielded 0.718. The factors can be 
described as follows: 

• Factor 1, accounting for the production domain of agriculture; 

• Factor 2, describing fixed single-purpose machines;  

• Factor 3, describing self-propelled stand-alone technologies operating in open field;  

• Factor 4, describing fixed multi-tasking machines;  

• Factor 5, accounting for agricultural robots used indoor at industrial level;  

• Factor 6, describing technologies using agricultural inputs (e.g., fertilizers, pesticides, 
seeds, water); 
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• Factor 7, describing technologies mainly used for livestock. 
The number of clusters (k=5) was iteratively selected as optimal, starting from a 10 clusters 
dendrogram applied to the binary dataset and decreasing this number until the number of items 
in the smaller cluster was higher than seven.   
Clusters are described as follows: 

• Cluster #1 (n=14). Robots using agronomic inputs. This small set includes technologies 
using agricultural inputs when performing agricultural operations like fertilization, sowing, 
weeding, and pest control. 

• Cluster #2 (n=64). Indoor livestock robotics. This cluster consists of robots for livestock 
rearing, and operating indoor. They include technologies used for feeding animals and 
washing and sanitizing stables and kennels. 

• Cluster #3 (n=17). Single-purpose UGVs and implements. This small cluster includes 
automated technologies used with or propelled by other agricultural machines like tractors.  

• Cluster #4 (n=58). Fixed single-purpose machines. This set contains technologies used in 
indoor and in an industrial environment, with electrical energy supplied by a power cable. 

• Cluster #5 (n=93). Monitoring technology. This large set includes both unmanned aerial 
vehicles (UAVs) mounting technology for soil and canopy sensing and indoor monitoring 
technology, like, for instance, in greenhouses.  

In the one-way ANOVA tests, the observed p-value was significant for every cluster (<0.01).Tukey 
multiple pairwise-comparisons highlighted the presence of at least three statistically significant 
differences between each pairs of cluster (Table 3). 

Table 3. Tukey multiple comparisons of means 
Clusters Factor1 Factor2  Factor3 Factor4 Factor5 Factor6 Factor7 
2-1 0.001 0.631 0.002 0.000 0.000 0.000 0.000 
3-1 0.645 0.832 0.000 0.000 0.652 0.000 0.000 
4-1 0.997 0.000 0.007 0.000 0.091 0.000 0.356 
5-1 0.915 0.024 0.055 0.000 0.525 0.000 0.756 
3-2 0.000 0.999 0.000 0.999 0.000 0.044 0.001 
4-2 0.000 0.000 0.989 0.771 0.000 0.122 0.000 
5-2 0.000 0.048 0.267 0.026 0.000 0.705 0.000 
4-3 0.198 0.000 0.000 0.981 0.886 0.754 0.000 
5-3 0.874 0.359 0.000 0.242 0.999 0.003 0.000 
5-4 0.243 0.000 0.616 0.000 0.376 0.002 0.740 

 
The most significant differences across clusters were clearly observed for factors 2, 3, 4, 6, and 
7, for which a single cluster emerged among the others (Figure 1). Regarding factor 1, all clusters 
were considered except for cluster #2, while for factor 5 clusters #4 and #5. 

4. Discussion 
Overall, the cluster analysis performed gave reasonable results, providing interesting insights.  
A general set of multi-purpose robots used for agricultural operations, identified by Cluster #1, 
includes robots operating in the open field and protected environment, able to carry out various 
agricultural operations; the peculiarity of this group is the fact that most of the included 
technologies use agronomic inputs (e.g., fertilizers, pesticides, herbicides, irrigation water, seeds) 
in a quite effective and efficient way, thereby leaving a reduced footprint to the environment in 
comparison with traditional technologies. If, on the one hand, these novel technologies can 
mitigate much of the negative externalities that often characterize conventional agriculture4, on 
the other hand, they should be subjected to specific operating rules allowing good production 
levels without harming the environment. Apparently, Cluster #1 is the less populated cluster, and 
this may be due to the fact that autonomous robots like UGVs have several limitations today, like 
the impossibility to survey large agriculture fields rapidly20 as well as their high investment cost.  
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Cluster #2 includes systems used in the large 
domain of livestock and animal rearing, such as 
robots that autonomously manage feedings 
and also systems for the sanitation of 
environments. These technologies constitute 
relevant support for farmers in terms of time 
savings and health safeguards and must 
comply with health safety regulations.  
Cluster #3 is a heterogeneous group including 
ground open-field technology like UGVs and 
technologically advanced implements to be 
attached to tractors at least for the energy 
supply. These single-purpose technologies 
account for a large number of operations (e.g., 
harvesting, crop monitoring, mechanical 
weeding, and logistic operations). This large 
heterogeneity poses practical difficulties in 
addressing this set with a unique shared 
regulation. Rather, it would deserve further 
analysis to better differentiate the various 
systems, while needing additional 
observations. 
Cluster #4 represents a family of industrial fixed 
robots needing direct electrical supply; they are 
mostly fixed indoor systems, used, for 
example, in technological nurseries or to 
automate sowing or transplanting in an indoor 
environment. These technologies can be used 
both in agriculture and in livestock domain, but 
limited to milking.  
Cluster #5 includes technologies performing 
crop monitoring and canopy sensing, including 
UAVs, in the agricultural domain. Unlike other 
technologies, these systems require ICT 
knowledge and skills to harness sensor 
technology as well as operate agriculture 
drones. Probably these systems are the ones 
more subjected to technological obsolescence. 
Note that although UAVs can be used for 
pesticide application and fertilization, their use 
in these domains are restricted in several 
countries because aerial application of 
pesticides is not allowed. In light of this, the 
creation of two distinct cluster #1 and #5 
accounting, respectively, for spraying 
application and not, even with a similar 
technology, sounds fine.  

5. Conclusions 
This study provided useful insights for the creation of homogeneous groups of robots, in a sample 
consisting of 246 devices. The study can open up the possibility of setting specific regulatory 
policies and market strategies based on recurring characteristics within clusters. 

 
Fig 1. Tested factors among clusters 
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This research has some limitations. Incomplete information is obtainable by screening websites 
since many companies are reluctant to share information if not for business purposes. One step 
ahead in robot classification could be the achievement of a common and shared set of properties 
and functions describing, e.g., the types of production and activity, and the working environment. 
The classification covering various domains proposed in this study can guide more precise 
technology classifications based on phenotypisation in the field of ontology design. In this context, 
robot attributes can be defined by properties and entities describing other features, such as the 
production context, the working environment, the place of activity, the modularity and the 
interoperability level, the type of moving, energy supply, and activity carried out. 
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