Login

Proceedings

Find matching any: Reset
Profitability, Sustainability and Adoption
Precision Horticulture
Factors Driving Adoption
Sensor Application in Managing In-season Crop Variability
Vegetative Indices in Crop Production
Proximal and Remote Sensing of Soil and Crop (including Phenotyping)
Global Proliferation of Precision Agriculture and its Applications
Standards & Data Stewardship
Engineering Technologies and Advances
Fluorescence Sensing for Precision Crop Management
No Group
Precision Horticulture
Geospatial Data
Modeling and Geo-statistics
Add filter to result:
Authors
Abd-Elrahman, A
Abdalla, K
Abdelghafour, F
Abdelghafour, F.Y
Acebron, K
Adamchuk, V
Adamchuk, V
Adamchuk, V
Adamchuk, V
Adamchuk, V
Adamchuk, V
Adamchuk, V
Adamchuk, V
Adamchuk, V.I
Adamchuk, V.I
Alabi, T
Albrecht, U
Alchanatis, V
Alderman, P.D
Amaral, L.R
Amaral, L.R
Ameglio, L
Ameglio, L
Ampatzidis, Y
Anaba, C.I
Anderson, L
Apolo-Apolo, E
Applegate, D.B
Archer, J.K
Avanzi, J.C
B, K
Badr, G
Bae, I
Baghernejad, M
Baio, F
Baio, F
Balasundram, S.K
Balkcom, K
Baresel, P
Bareth, G
Barros, M.F
Basso, B
Bassoi, L.H
Bastos, A.H
Bates, T.R
Bazzi, C.L
Beeri, O
Beeri, O
Beeri, O
Belasque Junior, J
Ben Abdallah, F
Berger, A.W
Bergheim, R
Bernardi, A.C
Berne, D.T
Berzins, R
Biswas, A
Biswas, A
Biswas, A
Blanche, D
Blasch, G
Boiko, I
Borghi, E
Bortolon, E.S
Bortolon, L
Brandes, N
Brant, V
Buelvas, R
Buelvas, R.M
Buelvas, R.M
Bullock, R.J
Burns, D
Burris, E
Callegari, D
Cambouris, A
Cambouris, A
Cambouris, A
Cambouris, A
Canavari, M
Caron, J
Cerri, D.G
Charvat Jr., K
Charvat jr., K
Charvat, K
Charvat, K
Chen, L
Chen, L
Chen, L
Chen, T
Cheng, Z
Cheng, Z
Chiang, R
Chokmani, K
Chokmani, K
Chong, Y
Christiansen, M.P
Chung, S
Chung, S
Chyba, J
Ciampitti, I
Claire, G
Clarke, A
Claussen, J
Claußen, J
Clay, D.E
Cocciardi, R
Coen, T
Cointault, F
Cointault, F
Congona Benavente, J
Craker, B.E
Cranfield, G
Csatári, N
Csenki, S
Cugnasca, C.E
Da Costa, J
Da Costa, J
Dafnaki, D
Daggett, D.G
Darrozes, J
Dash, M
De Baerdemaeker, J
Delgadillo, C.A
Denton, A.M
Derival, M
Diago, M
Diago, M
Drechsler, K
Dreyer, J
Drummond, S.T
Dubois, J
Dutilleul, P
Dyrmann, M
Dyrmann, M
Egea, G
Eitelwein, M.T
Ellixson, A
Ellsworth, J.W
Emadi, M.M
Emmi, L
English, B.C
English, B.C
Erdle, K
Erickson, B.J
Eriksen, J
Esau, T
Esau, T.J
Evers, B
Fang, H
Farooque, A
Feng, H
Fergugson, R.B
Feritas Colaço, A
Fernandez-Novales, J
Ferraz, M.N
Ferreyra, R
Flores, P
Floyd, W
Fountas, S
Franzen, D.W
Frazier, R
Freitas, A.A
Fritz, A
Fritz, B.K
Fuentes, C.L
Fulton, J.P
Fulton, J.P
Fulton, J.P
Fusamura, R
Gan, H
Garcia, A.H
Garcia-Torres, L
Garza, C
Gendron, L
Germain, C
Germain, C
Gerth, S
Gerth, S
Gholizadeh, A
Gislum, R
Gislum, R
Gnyp, M.L
Goeringer, P
Goffart, J
Gonçalves Trevisan, R
Gowler, A
Goyer, C
Gómez-Candón, D
Griffin, T
Gross, B
Grove, J
Gu, X
Gu, X
Guo, J
Guo, J
Gupta, S
Gutierrez, S
Hackl, H
Hafferman, A
Happich, G
Haringx, S.C
Harkin, S.J
Harms, H
Harsányi, E
Hatfield, J.L
Haymann, N
Heggemann, T
Hettiarachchi, G
Hijazi, B
Hill, C
Hillyer, C
Hoerfarter, R
Hoffmann Silva Karp, F
Hoffmann Silva Karp, F
Hoffmann, W.C
Hoffmann, W.C
Hokanson, G.E
Hong, S
Horakova, S
Horakova, S
Howatt, T
Huang, S
Huang, W
Huang, Y
Hunsche, M
Hunsche, M
Hunt, A
Hülsbergen, K.J
Ikpi, A.E
Inamasu, R.Y
Inamasu, R.Y
Iwasaki, Y
Jang, S
Jansky, T
Jasper, J
Jedmowski, C
Jeong, D
Ji, W
Ji, W
Jiang, R
Jing, Q
Johnson, R.M
Journaux, L
Jurado-Expósito, M
Jørgensen, R.N
Jørgensen, R.N
Jørgensen, R.N
KOJIMA, Y
Kabir, M.S
Kaho, T
Kakarla, S
Kaplan, G
Karp, F.H
Karstoft, H
Kaur, G
Kawagoe, Y
Keller, B
Kepka, M
Keresztes, B
Keresztes, B
Khosla, R
Kim, Y
Kim, Y
Kipp, S
Kisekka, I
Kitchen, N.R
Klein, R.N
Kodaira, M
Kodaira, M
Koszinski, S
Kraska, T
Krcek, V
Kross, A
Kroulik, M
Krueger Shvetsova, E
Kruse, D
Kubickova, H
Kurtener, D
Kurtener, D
Kyveryga, P.M
Lai, C
Lajili, A
Lambert, D.M
Lambert, D.M
Lan, Y
Lan, Y
Lang, T
Lang, V
Langovskis, D
Lapen, D
Larson, J.A
Larson, J.A
Lattanzi, P
Laurent, P
Laursen, M.S
Laursen, M.S
Leclerc, M
Lee, S
Lee, W
Lee, W.S
Leenen, M
Lefsrud, M
Leksono, E
Leksono, E
Leufen, G
Levitan, N
Li, S
Li, Z
Lins, E.C
Liu, J
Longchamps, L
Lowenberg-DeBoer, J
López-Granados, F
Luchiari Junior, A
Luck, J.D
Luck, J.D
Luck, J.D
Lukas, V
Macura, J
Magalh, P.S
Magalhaes, P.S
Maidl, F.X
Makkar, M.S
Manon, M
Marcassa, L.G
Marin, A
Marin-Barrero, C
Marine, L
Marmette, M
Marra, M.C
Martin, D.L
Martin, R
Martinez-Guanter, J
May-tal, S
McCarter, K.S
McDonald, T.P
McDonald, T.P
McGraw, T
McNairn, H
Melnitchouck, A
Meng, J
Meng, J
Mey-tal, S
Mey-tal, S
Miao, Y
Mills, A
Min, C
Mishra, A.K
Mishra, A.K
Mistele, B
Mistele, B
Mistele, B
Miteran, J
Mohamed, M.M
Mohd Hanif, A
Mohd Soom, M
Molin, J
Molin, J.P
Molin, J.P
Molin, J.P
Moreda, E.A
Moreda, E.A
Morgan, S
Morris, E
Morris, T
Mostafa, F
Mueller, D
Mullenix, D
Mullenix, D
Muller, O
Muramatsu, K
Murrell, S
Nagy, J
Naima, B
Naime, J.D
Najvirt, D
Nault, J
Nef, B.K
Nerpel, D
Neupane, S
Nieman, S.T
Noga, G
Noga, G
Novais, W
Ohaba, M
Okoruwa, V.O
Oksanen, T
Olayide, O.E
Olivier, G
Omodele, T
Ortega, R
Ortega, R.A
Ortega, R.A
Ortiz, B.V
Overstreet, D
Paindavoine, M
Palacios, F
Pan, L
Pandit, M
Panneton, B
Paraforos, D
Pasquel, D
Paudel, K.P
Pelta, R
Pelta, R
Pena-Yewtukhiw, E.M
Peña-Barragán, J.M
Percival, D.C
Perez, N.B
Perez-Ruiz, M
Perret, J.S
Perron, I
Perron, I
Perron, I
Perron, I
Pessl, G
Pieger, K
Pieruschka, R
Pilz, C
Pingle, V
Pl, L
Poblete, H.P
Poblete, H.P
Poland, J
Portz, G
Portz, G
Potrpin, J
Preiner, M
Price, R
Prueger, J.H
Pätzold, S
Qian, B
Queiros, L.R
R, C
Ragab, R
Ragán, P
Randriamanga, D
Rascher, U
Rathee, G
Raz, J
Raz, Y
Read, S.M
Reddy, L
Rejesus, R.M
Rekhi, M
Resende, A.V
Reznik, T
Rhea, S.T
Roberts, R.K
Roberts, R.K
Rodrigues Júnior, F.H
Rodriguez, J.C
Rosu, R
Roux, S
Rozenstein, O
Rud, R
Rud, R
Rudy, H
Rumpf, T
Russo, J.M
Rátonyi, T
Sébastien, D
SANAEI, A
SONODA, M
Saberioon, M
Saeys, W
Sanders, P
Sauvageau, G
Saxena, A
Schmidhalter, U
Schmidhalter, U
Schmidhalter, U
Schmidt, K
Scholz, O
Schroeder, M.A
Schultz, E.D
Schumann, A.W
Schurr, U
Segarra, E
Seger, J
Seo, Y
Shang, J
Sharda, A
Sharda, A
Sharma, A
Sharma, L
Shearer, S.A
Shearer, S.A
Shearer, S.A
Shearouse, T.W
Shen, F
Shi, Y
Shibusawa, S
Shibusawa, S
Shibusawa, S
Shibusawa, S
Shibusawa, S
Shibusawa, S
Sielenkemper, M
Silva, M.J
Skerikova, M
Skovsen, S
Skovsen, S
Skovsen, S
Smith, A.P
Snevajs, H
Song, X
Souza, E.G
Steier, A
Stelford, M.W
Stiehl, D
Stombaugh, T
Straw, C
Strenner, M
Sudduth, K.A
Sugihara, T
Sunley, S
Sunohara, M
Swe, K.M
Tabatabai, S
Tahir, M
Tanny, J
Tardaguila, J
Tardaguila, J
Taylor, J.A
Taylor, J.A
Tevis, J.W
Thompson, L
Thompson, N.M
Thomson, S.J
Tikasz, P
Tisseyre, B
Torbert, H
Torino, M.S
Tremblay, N
Tremblay, N
Trevisan, R.G
Tsoulias, N
Tóth, G
Uhlmann, N
Uhrmann, F
Umeda, H
Upadhyaya, S
Vanacht, M
Vangeyte, J
Vargas, F
Velandia, M
Velandia, M
Verma, A.P
Viator, R.P
Vilela, M.D
Villalobos, J.E
Virgawati, S
Vitali, G
Vories, E.D
Vántus, A
Wagner, P
Wang, C
Wang, C
Wang, J
Wang, N
Wang, S
Wang, Y
Warren, J.G
Warren, J.G
Watcharaanantapong, P
Watkins, K
Welch, S
Welp, G
Westbrook, J
Whalen, J
Whitney, S
Williams, D
Wilson, J.A
Wilson, J.W
Wilson, R
Wyatt, B
Wörlein, N
Xu, G
Xu, X
Xu, X
Yang, C
Yang, G
Yang, G
Yang, X
Yao, Y
Yuncai, H
Zabransky, P
Zadrazil, F
Zaller, M
Zaman, Q
Zaman, Q
Zandonadi, R.S
Zebarth, B
Zebarth, B
Zebarth, B
Zebrath, B
Zendonadi, N
Zhang, R
Zhang, R
Zhang, X
Zhao, C
Zimmermanm, L
Znoj, E
Zoran, C
Zude-Sasse, M
http://icons.paqinteractive.com/16x16/ac, G
http://icons.paqinteractive.com/16x16/ac, G
http://icons.paqinteractive.com/16x16/ac, G
van Vliet, L
Ágnes, T
Topics
Engineering Technologies and Advances
Modeling and Geo-statistics
Sensor Application in Managing In-season Crop Variability
Proximal and Remote Sensing of Soil and Crop (including Phenotyping)
Precision Horticulture
Geospatial Data
Factors Driving Adoption
Standards & Data Stewardship
Profitability, Sustainability and Adoption
Global Proliferation of Precision Agriculture and its Applications
Precision Horticulture
Vegetative Indices in Crop Production
Fluorescence Sensing for Precision Crop Management
Type
Poster
Oral
Year
2010
2012
2018
2022
2016
2008
2014
Home » Topics » Results

Topics

Filter results145 paper(s) found.

1. Performance Evaluation Of A Prototype Variable Rate Sprayer For Spot- Application Of Agrochemicals In Wild Blueberry Fields

  Wild blueberry yields are highly dependent on agrochemicals for adequate weed control. The excessive use of agrochemicals with uniform application in significant bare spots and plant areas has resulted in increased cost of production. A cost-effective automated prototype variable rate (VR) sprayer was developed for spot-application (SA) of agrochemicals in a specific section of the sprayer boom where the weeds have been detected. The weed patches were mapped with an RTK-... Q. Zaman, A.W. Schumann, D.C. Percival, T.J. Esau, S.M. Read

2. Saltmed Model As An Integrated Management Tool For Precision Management Of Water, Crop, Soil, And Fertilizers

                 SALTMED-2009: A modelling tool for Precision Agriculture                                                    R. Ragab Centre for Ecology and H... R. Ragab

3. Development Of Unmanned Aerial Vehicles For Site-specific Crop Production Management

... Y. Huang, W.C. Hoffmann, Y. Lan, S.J. Thomson, B.K. Fritz

4. Optical Based Sugarcane Yield Monitors

Several different optical sensors were investigated to detect sugarcane yield on a billet type sugarcane harvester. These sensors included an over-head optical sensor and a below-the-conveyor sensor. Both sensors indicated mass flow rate from a volume measurement of the cane on the conveyor slats. Both systems gave good results with linear line calibration equations and adjusted R-square values from 0.96 to 0.97. Weight wagon weights in the 0.6 to 1.6 metric ton range were estimated to 7.5% o... R. Price, R.M. Johnson, R.P. Viator

5. On-the-go Condition Mapping For Harvesting Machinery

In recent years control systems have been used to alleviate the task of harvesting machinery operators. Automation allows the operator to spend more time on other tasks such as coordinating transport. Moreover, such control systems guarantee constant performance throughout the day whereas an operator gets tired. The perfect control system anticipates on the harvest condition, just like an experienced operator would. The operator makes a visual assessment of the condition in terms of... T. Coen, J. De baerdemaeker, W. Saeys

6. Smoothness Index Of Thematic Maps

A thematic map shows the spatial distribution of one or more specific data themes for standard geographic areas. The thematic maps are generated to represent the studied variables, so interpolators are used to determine their values in places not sampled. It is usuall... C.L. Bazzi, E.G. Souza, D. Stiehl

7. Study On Application Of Wireless Sensor Networks For Precision Agriculture

  Abstract: The use of sensor network to achieve soil moisture real-time detection can provide the decision-making basis for precision agriculture. In this... G. Xu, L. Chen, R. Zhang, J. Guo, Y. Wang

8. Spatial Modelling Of Agricultural Crops For Parallel Loading Operations

There is a trend in agricultural engineering towards high-performance harvesting machines with growing operating width and throughput. As much as performance and throughput are rising, the transportation units are characterized by increasing transportation volume. If harvesting and transport are combined in parallel operation (e.g. self-propelled forage harvester), the driver of the harvesting machine and the driver of the transport unit has to pay highest attention to the loading p... G. Happich, T. Lang, H. Harms

9. Application Of Algebra Hyper-curve Neural Network In Soil Nutrient Spatial Interpolation

Study on spatial variability of soil nutrient is the basis of soil nutrient management in precision agriculture. For study on application potential and characteristics of algebra hyper-curve neural network(AHNN) in delineating soil properties spatial variability and interpolation, total 956 soil samples were taken for alkaline hydrolytic nitrogen measurement from a 50 hectares field using 20m*20m grid sampling. The test data set consisted of 100 random samples extracti... L. Chen, C. Zhao, W. Huang, T. Chen, J. Wang

10. Analysis Of Water Use Efficiency Using On-the-go Soil Sensing And A Wireless Network

An efficient irrigation system should meet the demands of the growing crops. While limited water supply may result in yield reduction, excess irrigation is a waste of resources. To investigate water use efficiency, on-the-go sensing technology was used to reveal soil spatial variability relevant to water holding capacity (in this example, field elevation and apparent electrical conductivity). These high-density data layers were used to identify strategic sites where monitoring water availabil... L. Pan, V.I. Adamchuk, D.L. Martin, M.A. Schroeder, R.B. Fergugson

11. Evaluation Of Yield Maps Using Fuzzy Indicators

  The ultimate goal of application of yield maps is profitable crop output in many farming systems. Yield maps are the starting point in the precision farming system, and provide the final record indicating the effectiveness of any management changes. Researches on yield mapping shown, that positions and boundaries of zones with different levels ... E. Krueger shvetsova, D. Kurtener, D. Kurtener, H. Torbert

12. New Power-leds Based Illumination System For Fertilizer Granule Motion Estimation

Environmental problems have become more and more pressing in the past twenty years particularly with the fertilization operation, one main contributor to environmental imbalance. The understanding of the global centrifugal spreading process, most commonly used in Europe, can contribute to provide essential information about fertiliser granule deposition on the soil. This last one can be predicted using a ballistic flight model and several fertilizer characteristic’s determinat... F. Cointault, B. Hijazi, J. Dubois, J. Vangeyte, M. Paindavoine

13. Prediction Of Soil Moisture Content And Penetration Resistance Using Real-time Soil Meter

A real-time soil compaction meter that refers to the air injection subsoiler, is developed.  The final goal is to predict standarized soil compaction that is converted from soil moisture content, working resistance and working speed.  This experiment confirmed performance of predicting the soil moisture content and of measuring the working resistance was conducted.  The equipments of the meter are a working resistance measurement device received from the soil and a spectroscope... T. Kaho, M. Kodaira, S. Shibusawa

14. Precision Agricultural Branding Using Near-infrared Spectroscopy System

... Y. Kojima, S. Shibusawa, R. Fusamura, M. Sonoda

15. Assessment Of Climate Variability On Optimal Nitrogen Fertilizer Rates For Precision Agriculture

 Yield response functions... B. Basso, G. Http://icons.paqinteractive.com/16x16/ac, G. Http://icons.paqinteractive.com/16x16/ac, G. Http://icons.paqinteractive.com/16x16/ac

16. Mapping The Effect Of Food Prices, Productivity And Poverty In The Development Domains Of Nigeria

  Poverty remains the major obstacle to economic emancipation and achievement of development agenda in Nigeria. Worse still, rising food prices pose a major threat to feeding the teeming population in Nigeria. Declining food production, high population growth, and negative food trade balance combine to worsen the food and poverty situations in Nigeria. We stand on the premise that surging and volatile food prices could have a hardest hit on those who could not afford it –... O.E. Olayide, A.E. Ikpi, V.O. Okoruwa, , T. Alabi, T. Omodele

17. Developing Of A Monitoring System Of Cutting, Carrying, And Transportation Of Sugar Cane In Order To Manage Fleet

In the productive process for obtaining sugar cane products, the costs associated to the activities of harvesting (cut), carrying and transport (CCT), represent great part of the final cost of the product. In order to reduce this costs new technologies should be adopted in the agricultural mechanization using precision agriculture methods. The use of the information technology combined with the use of intelligent components can help to improve the performance of machines and equipments ... D.G. Cerri, P.S. Magalh

18. Early Identification Of Leaf Rust On Wheat Leaves With Robust Fitting Of Hyperspectral Signatures

Early recognition of pathogen infection is of great relevance in precision plant protection. Disease detection before the occurrence of visual symptoms is of particular interest. By use of a laserfluoroscope, UV-light induced fluorescence data were collected from healthy and with leaf rust infected wheat leaves of the susceptible cv. Ritmo 2-4 days after inoculation under controlled conditions. In order to evaluate disease impact on spectral characteristics 215 wavelengths in the range of 370... C. R, T. Rumpf, K. B, M. Hunsche, L. Pl, G. Noga

19. Decision Making And Operational Planning

In order to automatize crop farming and its processes, a number of technological and other problems have to be solved. Agricultural field robots are in our vision to fulfill operations in fields. Robots involve number of technological challenges in order to be functional and reliable, but also systems controlling these robots are to be developed. In this paper automatic crop farming is the vision, and decision making models and operational planning is discussed. Study is carried out with simu... T. Oksanen, ,

20. Wheat Growth Stages Discrimination Using Generalized Fourier Descriptors In Pattern Recognition Context

... F. Cointault, A. Marin, L. Journaux, J. Miteran, R. Martin

21. Evaluation And Contrast Of An Auto Guidance System Operating On A Sugar Cane Harvester In Brazil

The change on the harvesting sugar cane operation from the manual to mechanized cut  increased the amount of sugar cane cut by the mill per day, but the operation increased the cane loss, which is left behind on the field. The purpose of this work was to contrast the accuracy achiev... F. Baio

22. Computer Model By A Linear Program And Via Internet To Select Agricultural Mechanized Systems Based On The Smallest Operational Cost

Computer programs have been used to help the farmers on the fleet selection. However, these computing models are based on the previous choice of the mechanized system made by the user. On this context, the purpose of this work was to develop a free computer model by a linear program and via internet to select agricultural mechanized systems ... F. Baio, ,

23. An Inter-connection Model Between Standard Zigbee And Isobus Network (ISO11783)

The typical five-step cyclical process of precision agriculture includes soil and environment data collection, diagnosis, data analysis, precision field correction operation and evaluations. Usually, some steps are executed in field, others in the farm office and others in both. This can result in a complex system and consequently in waste of time and high cost in equipment, tools and workmanship. To simplify this process, the challenge is ... M.F. Barros, C.E. Cugnasca, J. Congona benavente

24. Tools For Evaluating The Potential Of Automatic Section Control

One of the newest technologies in precision agriculture is automatic section control on application equipment. This technology has tremendous potential to reduce wasted inputs, especially on irregularly shaped fields. Paybacks are not necessarily as great on rectangular fields. Producers considering adoption of the technology need to decide whether they will receive sufficient payback for their field shapes. They must also d... T. Stombaugh, R.S. Zandonadi, J.D. Luck, T.P. Mcdonald, T. Mcgraw

25. Rhizosphere Moisture Modulation By Water Head Precision Control

Abstract: A digital irrigation microcomputer system, designed to modulate rhizosphere moisture using ... M. Ohaba, S. Shibusawa

26. Application Rate Stability When Implementing Automatic Section Control Technology On Agricultural Sprayers

Automatic section control (on and off) technology of sprayer boom sections is an intelligent solution to maximize spray application efficiency during field operations. This technology can reduce over-application of products. Spray controllers available with this technology attempt to maintain the set target rate by adjusting system flow rate based on ground speed and application width.  Therefore, as sections are turned on or off, the flow regulating hardware must respond to m... A. Sharda, J.D. Luck, J.P. Fulton, S.A. Shearer, S.A. Shearer, D. Mullenix, M. Vanacht

27. Energy-efficient Wireless Sensor Network System For Soil Moisture Information Collecting

Collecting field soil moisture information is the foundation of auto-irrigation. This paper introduced a soil moisture information collecting system based on wireless sensor network (WSN) technology and with application background of automatic drip irrigation for cotton field. Firstly, application background was analyzed and application requirement was defined. The system worked together with a drip irrigation system in cotton field. After study, it was found that the output of soil moisture ... R. Zhang, L. Chen, J. Guo, J.G. Warren, J.G. Warren

28. Development Of A Decision Support System For Precision Areawide Pest Management In Cotton Production

  Crop models simulate growth and development, and provide relevant information for the routine management of the crop.  The use of crop models on large areas for diagnosing crop growing conditions or predicting crop production is hampered by the lack of sufficient spatial information about model inputs. Integrating crop models with other information technologies such as geographic information systems (GIS), variable rate technology, remote sensing, and global p... Y. Lan, W.C. Hoffmann, J. Westbrook, M. Zaller

29. Mapping Soil Salinity Using Cokriging Method In Arsanjan Plain, Southern Iran

  Salt-affected landscapes are highly sensitive to changes in climatic, edaphic and hydrological conditions in time and space in semi-arid regions such as Arsanjan plain, southern Iran. The objective of this study was to combine digital satellite data with ground based measurements of ECe by cokriging method to possibility improve the soil salinity maps of study area. Soil samples in the 85 sampling site (10187 ha)were collected from 0-30 cm depths, georefrenced using GPS recei... M.P. Baghernejad, M.M. Emadi

30. Design And Construction Of A Computer Aided Control And Monitoring System For Greenhouses

ABSTRACT High expenditure is one the major disadvantages of using human or labor work force in agriculture division. Lack of accurate and precise processing, low working speed and the effect of physical tiredness on their efficiency are same other disadvantages. Using modern technology and replacing human work force with the automated mechanisms and instruments or intelligent machinery leads to the reduction of these expenses, enhancement of precision, accuracy and work speed ... A. Sanaei

31. Accounting For Spatial Correlation Using Radial Smoothers In Statistical Models Used For Developing Variable-rate Treatment Prescriptions

Variable-rate treatment prescriptions for use on commercial farms can be developed from embedded field trials on those farms. Such embedded trials typically involve non-random, high-density sampling schemes that result in large datasets and response variables exhibiting spatial correlation. In order to accurately evaluate the significance of the effects of the applied treatments and the measured field characteristics on the response of interest, this spatial correlation must be accounted for ... K.S. Mccarter, E. Burris

32. Crop Rotation Impacts ‘Temporal Sampling’ Needed For Landscape-defined Management Zones

Yield and landscape position are used to delineate management zones, but this approach is confounded by yield’s weather dependence, causing yield to evidence temporal variability/lack of yield stability. Management options (e.g. crop rotation) also influence yield stability. Our objective was to build a model that would describe the influence of crop rotation on the temporal yield stability of landscape defined management zones. Corn (Zea mays L.) yield data for two rotat... E.M. Pena-yewtukhiw, J. Grove

33. Tip Flow Uniformity When Using Different Automatic Section Control Technologies During Field Operations

Automatic section control (ASC) technology provides a means to reduce double-coverage and application in unwanted areas thereby leading to input savings and improved environmental stewardship.  However, the impact of ASC on spray boom dynamics and tip flow uniformity are unknown. Therefore, a study was conducted to evaluate tip flow rate uniformity and control system response in maintaining target application rates during field operation. Field experiments were conducted using two self-p... A. Sharda, J.D. Luck, J.P. Fulton, S.A. Shearer, T.P. Mcdonald, D. Mullenix

34. Attaching Multiple Conductivity Meters To An Atv To Speed Up Precision Agriculture Soil Surveys

Ground conductivity meters are used in a number of precision agriculture applications, including the estimation of water content, nutrient levels, salinity and depth of topsoil. Typically the Geonics EM38 conductivity meter, and to a lesser extent the EM31, are used for soil surveys. Most conductivity surveys involve towing a ground conductivity meter behind an all-terrain vehicle (ATV). In some situations, such as rutted or sloping fields, it is preferable to mount the conductivity meter dir... E. Morris, A. Clarke, S. Sunley, C. Hill, G. Cranfield

35. Use of Corn Height to Improve the Relationship Between Active Optical Sensor Readings and Yield Estimates

Pre-season and early in-season loss of N continues to be a problem in corn. One method to improve nitrogen use efficiency is to fertilize based on in-season crop foliage sensors. The objective of this study was to evaluate two different ground-based, active-optical sensors and explore the use of corn height with sensor readings for improved relationship with corn yield. Two different ground-based active-optical sensors (GreenseekerTM ... L. Sharma, D.W. Franzen

36. Using Crop Budgeting Spreadsheets Can Assist Producers In Evaluating The Cost Effectiveness Of Adoption Of The Various Precision Agriculture Technologies

Producers asked the question which Precision Agriculture Technologies can be economical in my farming operation?  The use of easily modified crop budgets can help the producer evaluate the technologies and how they affect the profitability of one’s agricultural enterp... R.N. Klein, R. Wilson

37. Factors Influencing the Timing of Precision Agriculture Technology Adoption in Southern U.S. Cotton Production

Technology innovators in cotton production adopted precision agriculture (PA) technologies soon after they became commercially available, while others adopted these technologies in later years after evaluating the success of the innovators. The timing ... D.M. Lambert, J.A. Larson, B.C. English, R.M. Rejesus, M.C. Marra, A.K. Mishra, C. Wang, P. Watcharaanantapong, R.K. Roberts, M. Velandia

38. Development of Ground Based Multi-source Crop Information Collection System.

Precision agriculture requires reliable technology to acquire accurate information on crop conditions. A ground-based integrated sensor and instrumentation system was developed to measure real-time crop conditions. The integration system included multispectral camera and N-sensor for real time Nitrogen application. The system was interfaced with a DGPS receiver to provide spatial coordinates for sensor readings. Before mounting of the sensors on modified paddy transplanter, different mounting... A. Sharma, M.S. Makkar, S. Gupta

39. Active Sensor Performance – Dependence to Measuring Height, Light Intensity and Device Temperature

For land use management, agriculture, and crop management spectral remote sensing is widely used. Ground-based sensing is particularly advantageous allowing to directly link on-site spectral information with agronomic algorithms. Sensors are nowadays most frequently used in site-specific oriented applications of fertilizers, but similarly site-specific applications of growth regulators, herbicides and pesticides become more often adopted. Generally little is known about the effects ... B. Mistele, U. Schmidhalter, S. Kipp

40. On-Farm Trials Using Precision Ag in Northeast Louisiana

The availability of yield monitors and precision application equipment on producers’ farms have made it much easier for researchers to take the results from experiment station trials and apply them to producers’ fields.  Treatments/methods are applied in strips, by prescription, embedded plots or in combination.  Fields are divided into zones for analyzing the harvest yield data.  These can include soil type, soil Ec, or other criteria.  Treatments are analyzed... D. Burns, D. Overstreet, D. Kruse, R. Frazier, D. Blanche

41. Estimation of Nitrogen of Rice in Different Growth Stages Using Tetracam Agriculture Digital Camera

Many methods are available to monitor nitrogen content of rice during various growth stages. However, this monitoring still requires a quick, simple, accurate and inexpensive technique that needs to be developed. In this study, Tetracam Agriculture Digital Camera (ADC) was used to acquire high spatial and temporal resolution in order to determine the status of nitrogen (N) and predict the grain yield of rice (Oriza sativa L.). In this study, 12 pots of rice with four different N treatments (0, ... A. Gholizadeh , M. Mohd soom , M. Saberioon

42. The Use of Artificial Neuronal Networks to Generate Decision Rules for Site-Specific Nitrogen Fertilization

The basis for successful and sustainable agriculture is the utilization of adequate decision rules. When it comes to precision farming, these rules have to be applied to each sub-field, where they determine the actions to be taken. There are many possibilities for achieving site-specific information for a field (e.g. measuring the electrical conductivity of soil or yield mapping). But which rules should be used to link this information with profit maximization treatment recommendati... P. Wagner

43. Comparison of Active and Passive Spectral Sensors in Discriminating Biomass Parameters and Nitrogen Status in Wheat Cultivars

Several sensor systems are available for ground-based remote sensing in crops. Vegetation indices of multiple active and passive sensors have seldom been compared in determining plant health. This study was aimed to compare active and passive sensing systems in terms of their ability to recognize agronomic parameters. One bi-directional passive radiometer (BDR) and three active sensors (Crop Circle, GreenSeeker, and an active flash sensor (AFS)) were tested for their ability to assess six des... B. Mistele, U. Schmidhalter, K. Erdle

44. A Comparison of Plant Temperatures as Measured By Thermal Imaging and Infrared Thermometry

... P. Baresel, B. Mistele, H. Yuncai, U. Schmidhalter, H. Hackl

45. Assembly of an Ultrasound Sensors System for Mapping of Sugar Cane Height

In Precision Agriculture, the use of sensors provides faster data collection on plant, soil, and climate, allowing collecting larger sample sets with better information quality. The objective of this study was the development of a system for plant height measurement in order to mapping of sugar cane crop, so that regions with plant growth variation and grow failures could be id... A.H. Garcia, F.H. Rodrigues júnior, A.H. Bastos, P.S. Magalhaes, M.J. Silva

46. The Adoption of Information Technologies and Subsequent Changes in Input Use in Cotton Production

The use of precision farming has become increasingly important in cotton production. It allows farmers to take advantage of knowledge about infield variability by applying expensive inputs at levels appropriate to crop needs. Essential to the success of the p... N.M. Thompson, J.A. Larson, B.C. English, D.M. Lambert, R.K. Roberts, M. Velandia, C. Wang

47. In-Field Corn Stalk Location Using Rapid Line-Scan Technique

... Y. Shi, N. Wang

48. Model for Remote Estimation of Nitrogen Contents of Corn Leaf Using Hyper-Spectral Reflectance under Semi-Arid Condition.

Accuracy and precision of nitrogen estimation can be improved by hyperspectral remote sensing that lead... M. Tahir

49. Using Multiplex® to Manage Nitrogen Variability in Champagne Vineyard

... L. Marine, M. Manon, G. Claire, P. Laurent, F. Mostafa, C. Zoran, B. Naima, D. Sébastien, G. Olivier

50. Potential Indicators Based On Leaf Flavonoids Content for the Evaluation of Potato Crop Nitrogen Status

Nitrogen (N) fertilization strategies aim to limit environmental pollution by improving potato crop N use efficiency. Such strategies may use indicators for the assessment of in season crop N status (CNS). Leaf polyphenolics (flavonoids) content appears as a valuable indicator of CNS. Because of their absorption features ... J. Goffart, F. Ben abdallah

51. Adoption and Non-Adoption of Precision Farming Technologies by Cotton Farmers

  We used the 2009 Southern Cotton Precision Farming Survey data collected from farmers in twelve U.S. states (Alabama, Arkansas, Florida, Georgia, Louisiana, Missouri, Mississippi, North Carolina, South Carolina, Tennessee, Texas, and Virginia) to identify reasons on why some adopt and others do not adopt precision farming techniques. Those farmers who provided the cost as the reason for non-adoption are farmers characterized by lower educatio... A.K. Mishra, M. Pandit, K.P. Paudel, E. Segarra

52. Brazilian Precision Agriculture Research Network

The adoption of adequate technologies for food, biomass and fiber production can increase yield and quality and also reduce environmental impact through an efficient input application. Precision agriculture is the way to decisively contribute with efficient production with environment protection in Brazil. Based on this, recently Embrapa established the Brazilian P... J.D. Naime, L.R. Queiros, A.V. Resende, M.D. Vilela, L.H. Bassoi, N.B. Perez, A.C. Bernardi, R.Y. Inamasu

53. Adoption and Tendencies of Precision Agriculture Technologies in the Tocantins State, Brazil

Although precision agriculture is widely used throughout Brazilian crop production, it has not been used to increase the efficiency use of agricultural inputs. Besides, technologies available have not bee... L. Bortolon, E. Borghi, A. Luchiari junior, E.S. Bortolon, A.A. Freitas, R.Y. Inamasu, J.C. Avanzi

54. Measuring Sugarcane Height in Complement to Biomass Sensor for Nitrogen Management

Although extensive studied, nitrogen management remains a challenger for sugarcane growers, especially the nutrient spatial variability management, which demands the use of variable rate application. Canopy reflectance sensors are being studied, but it seems to saturate the sensor s... J.P. Molin, G. Portz, L.R. amaral

55. Optimum Sugarcane Growth Stage for Canopy Reflectance Sensor to Predict Biomass and Nitrogen Uptake

The recent technology of plant canopy reflectance sensors can provide the status of biomass and nitrogen nutrition of sugarcane spatially and in real time, but it is necessary to know the right moment to use this technology aiming the best predictions of the crop p... L.R. Amaral, J.P. Molin, J. Jasper, G. Portz

56. Evaluation of Differences in Corn Biomass and Nitrogen Uptake at Various Growth Stages Using Spectral Vegetation Indices

Application of canopy sensors for nitrogen (N) fertilizer management for corn grain production in the Southeast US r... M.S. Torino, B.V. Ortiz, J. Fulton, K. Balkcom

57. In-season Diagnosis of Rice Nitrogen Status Using an Active Canopy Sensor

... Y. Yao, Y. Miao, S. Huang, M. Gnyp, R. Khosla, R. Jiang, G. Bareth

58. A New Sensing System for Immediate and Direct Measurements of Soil Nitrate

In-season management of nitrogen is a critical component in the drive to increase the nitrogen use efficiency of commercial crop production. Increasing nitrogen use efficiency itself has become a prominent issue due to both economic and environmental/regulatory drivers over the last decade.   Solum, Inc (Mountain View, CA) has developed a new sensing technology to enable the immediate and direct measurement of soil nitrate. This allows rapid and economical so... M. Preiner

59. The Opportunities to Implement Precision Agriculture Technology in Indonesia: A Review

... S. Virgawati

60. System Approach to Implementing Precision Agriculture in Ukraine

As Ukrainian agricultural production undergoes major changes, a better understanding of the diversity of land resources is needed to optimize management.  Dealing with large fields (over 100 ha in size) with non-uniform growing conditions presents an opportunity for site-specific management of agricultural inputs. This presentation highlights the most satisfactory practices implemented during the past three years and provides an outlook for the continued on adoption of precision agr... I. Boiko

61. Suitability Of Fluorescence Sensors To Estimate The Susceptibility Degree Of Spring Barley To Powdery Mildew And Leaf Rust

The overall role of precision agriculture is not restricted to those systems for in-field and in-season sensing of the impact of stresses. Much more, its contribution comprises the prevention of stresses, amongst others by supporting the selection of appropriate and stress-tolerant genotypes in breeding programs. In this context, the development, selection and use of cultivars which are tolerant to pathogens establish an essential tool for a more sustainable and environmental-fr... G. Leufen, G. Noga, M. Hunsche

62. FOODIE Data Model for Precision Agriculture

The agriculture sector is a unique sector due to its strategic importance for both citizens (consumers) and economy (regional and global), which ideally should make the whole sector a network of interacting organizations. The FOODIE project aims at building an open and interoperable agricultural specialized platform hub on the cloud for the management of spatial and non-spatial data relevant for farming production. The FOODIE service platform deals with including their thematic, spatial, and ... K. Charvat, T. Reznik, K. Charvat jr., V. Lukas, S. Horakova, M. Kepka

63. Modus: a Standard for Big Data

Modus Standard is a system of defined terminology, agreed metadata and file transfer format that has grown from a need to exchange, merge and trend agricultural testing data. The three presenters will discuss steps taken to develop the system, benefits to data exchange, current user base and additions being made to the standard. ... D. Nerpel, J.W. Ellsworth, A. Hunt

64. Key Data Ownership, Privacy and Protection Issues and Strategies for the International Precision Agriculture Industry

Precision agriculture companies seek to leverage technology to process greater volumes of data, greater varieties of data, and at a velocity unfathomable to most. The promises of boundless benefits are coupled with risks associated with data ownership, stewardship and privacy. This paper presents some risks related to the management of farm data, in general, as well as those unique to operating in the international arena.  Examples of U.S. and international laws related to data protectio... J.K. Archer, C.A. Delgadillo, F. Shen

65. Ownership and Protections of Farm Data

Farm data has been a contentious point of debate with respect to ownership rights and impacts when access rights are misappropriated. One of the leading questions farmers ask deals with the protections provided to farm data. Although no specific laws or precedence exists, the possibility of trade secret is examined and ramifications for damages discussed. Farm management examples are provided to emphasize the potential outcomes of each possible recourse for misappropriating farm data. ... A. Ellixson, P. Goeringer, T. Griffin

66. Toward Geopolitical-Context-Enabled Interoperability in Precision Agriculture: AgGateway's SPADE, PAIL, WAVE, CART and ADAPT

AgGateway is a nonprofit consortium of 240+ businesses working to promote, enable and expand eAgriculture. It provides a non-competitive collaborative environment, transparent funding and governance models, and anti-trust and intellectual property policies that guide and protect members’ contributions and implementations. AgGateway primarily focuses on implementing existing standards and collaborating with other organizations to extend them when necessary. In 2010 AgGateway id... R. Ferreyra, D.B. Applegate, A.W. Berger, D.T. Berne, B.E. Craker, D.G. Daggett, A. Gowler, R.J. Bullock, S.C. Haringx, C. Hillyer, T. Howatt, B.K. Nef, S.T. Rhea, J.M. Russo, S.T. Nieman, P. Sanders, J.A. Wilson, J.W. Wilson, J.W. Tevis, M.W. Stelford, T.W. Shearouse, E.D. Schultz, L. Reddy

67. Rationale for and Benefits of a Community for On-Farm Data Sharing

Most data sets for evaluating crop production practices have too few locations and years to create reliable probabilities from predictive analytical analyses for the success of the practices. Yield monitors on combines have the potential to enable networks of farmers in collaboration with scientists and farm advisors to collect sufficient data for calculation of more reliable guidelines for crop production showing the probabilities that new or existing practices will improve the efficiency of... T. Morris, N. Tremblay, P.M. Kyveryga, D.E. Clay, S. Murrell, I. Ciampitti, L. Thompson, D. Mueller, J. Seger

68. A Software for Managing Remotely Sensed Imagery of Orchards Plantations for Precision Agriculture

Agronomic and environmental characteristics of fruit orchards/ forests can be automatically assessed from remote-sensing images by a computer programme named Clustering Assessment (CLUAS®). The aim of this paper is to describe the operational procedure of CLUAS and illustrate examples of the information provided for citrus orchards and Mediterranean forest. CLUAS® works as an additional menu (“add-on”) of ENVI®, a world-wide known image-processing programme, and operat... L. Garcia-torres, J.M. Peña-barragán, D. Gómez-candón, F. López-granados, M. Jurado-expósito

69. Seasonal Patterns of Vegetative Indices Over Cropping Systems

Remote sensing of reflectance in the visible and near-infrared portions of the spectrum has been used for agronomic applications for a number of years. The combination of different wavelengths into vegetative indices have proven useful for a variety of applications that range from biomass, leaf area, leaf chlorophyll, yield, crop residue, and crop damage. To help refine our understanding of vegetative indices studies were conducted on corn (Zea mays L.), soybean (Glycine max (L.) Merr.), whea... J.L. Hatfield, J.H. Prueger

70. Detection of Citrus Canker in Orange Plantation Using Fluorescence Spectroscopy

Citrus canker is a serious disease, caused by Xanthomonas axonopodis pv. Citri bacteria, which infects orange trees (Citrus aurantium L.), leading to a large economic loss in the orange juice production. Brazil produces 50% of the industrialized orange juice in the world. Therefore, the early detection and control of such disease is important for Brazilian economy. However this task is very hard and so far it has been done by naked eye inspection of each tree. Our goal is to... E.C. Lins, J. Belasque junior, L.G. Marcassa

71. Estimating Cotton Water Requirements Using Sentinel-2

Crop coefficient (Kc)-based estimation of crop water consumption is one of the most commonly used methods for irrigation management.  Spectral modeling of Kc is possible due to the high correlations between Kc and the crop phenologic development and spectral reflectance.  In this study, cotton evapotranspiration was measured in the field using several methods, including eddy covariance, surface renewal, and heat pulse.  Kc was estimated as the ratio between reference evapotrans... O. Rozenstein, N. Haymann, G. Kaplan , J. Tanny

72. Soil Microbial Communities Have Distinct Spatial Patterns in Agricultural Fields

Soil microbial communities mediate many important soil processes in agricultural fields, however their spatial distribution at distances relevant to precision agriculture is poorly understood. This study examined the soil physico-chemical properties and topographic features controlling the spatial distribution of soil microbial communities in a commercial potato field in eastern Canada using next generation sequencing. Soil was collected from a transect (1100 m) with 83 sampling points in a l... B. Zebarth, C. Goyer, S. Neupane, S. Li, A. Mills, S. Whitney, A. Cambouris, I. Perron

73. Understanding Temporal and Spatial Variation of Soil Available Nutrients with Satellite Remote Sensing

Soil available nutrients are the key determinants in crop growth, field stable output and ecological balance. The soil nutrients loss and surplus can strongly influence the stability of field ecological environment and cause unnecessary pollution. Hence, optimizing the status of soil available nutrients status has significant ecological and economic significance. With the advancement of mechanized farming and control technologies, soil available nutrients can be optimize by variable rate fert... J. Meng, H. Fang, Z. Cheng

74. Mapping Cotton Plant Height Using Digital Surface Models Derived from Overlapped Airborne Imagery

High resolution aerial images captured from unmanned aircraft systems (UASs) are recently being used to measure plant height over small test plots for phenotyping, but airborne images from manned aircraft have the potential for mapping plant height more practically over large fields. The objectives of this study were to evaluate the feasibility to measure cotton plant height from digital surface models (DSMs) derived from overlapped airborne imagery and compare the image-based estimates with ... C. Yang

75. An Active Thermography Method for Immature Citrus Fruit Detection

Fast and accurate methods of immature citrus fruit detection are critical to building early yield mapping systems. Previously, machine vision methods based on color images were used in many studies for citrus fruit detection. Despite the high resolutions of most color images, problems such as the color similarity between fruit and leaves, and various illumination conditions prevented those studies from achieving high accuracies. This project explored a novel method for immature citrus fruit d... H. Gan, W.S. Lee, V. Alchanatis, A. Abd-elrahman

76. A Precision Management Strategy on Soil Mapping

With the experience of field mapping practice during the last decade, a simple conclusion of four-level-field-management strategy was summarized. Level 1 was to describe the spatio-temporal variability of the fields, such as soil mapping and yield/quality mapping, and then to recognize the evidence in the field. Level 2 was to understand why the variability came out with help of farmers’ experience, such as mushing up of the date, memorizing the work history and the environmental condit... S. Shibusawa

77. Multi-Temporal Yield Pattern Analysis - Adaption of Pattern Recognition to Agronomic Data

In precision agriculture, the understanding of yield variability, both spatial and temporal, can deliver essential information for the decision making of site-specific crop management. Since commercial yield mapping started in the early 1990s, most research studies have focused on spatial variance or short-term temporal variance analyzed statistically in order to produce trend maps. Nowadays, longer records of high-quality yield data are available offering a new potential to evaluate yield va... G. Blasch, J.A. Taylor

78. Use of Proximal Soil Sensing to Delineate Management Zones in a Commercial Potato Field in Prince Edward Island, Canada

Management zones (MZs) are delineated areas within an agricultural field with relatively homogenous soil properties. Such MZs can often be used for site-specific management of crop production inputs. The purpose of this study was to determine the efficiency of two proximal soil sensors for delineating MZs in an 8.1-ha commercial potato (Solanum tuberosum L.) field in Prince Edward Island (PEI), Canada. A galvanic contact resistivity sensor (Veris-3100 [Veris]) and electromagnetic induction se... A. Cambouris, A. Lajili, K. Chokmani , I. Perron, V. Adamchuk, A. Biswas , B. Zebrath

79. Developing an Integrated Approach for Estimation of Soil Available Nutrient Content Using the Modified WOFOST Model and Time-Series Multispectral UAV Observations

Soil available nutrient (SAN) plays an important role in crop growth, yield formation, and plant-soil-atmosphere system exchange. Nitrogen (N), phosphorus (P) and potassium (K) are recognized as three primary nutrients in crop production. Accurate and timely information on SAN conditions at key crop growth stages is important for developing beneficial management practices. While traditional field sampling can obtain reliable information for limited number of sites, it is infeasible for spatia... Z. Cheng, J. Meng, J. Shang, J. Liu, B. Qian, Q. Jing

80. Assessment of the Information Content in Solar Reflective Satellite Measurements with Respect to Crop Growth Model State Variables

To increase the utilization of satellite remote sensing data in precision agriculture, it is necessary to retrieve the most relevant variables from the satellite signals so that the retrievals can be directly utilized by agricultural management entities. The variables that make up the state vector description of existing crop growth models provide inherent relevance to on-farm decision making because they can be used to predict future crop status based on changing farm inputs. In this study, ... N. Levitan, B. Gross

81. Data Fusion of Imagery from Different Satellites for Global and Daily Crop Monitoring

Satellite-based Crop Monitoring is an important tool for decision making of irrigation, fertilization, crop protection, damage assessment and more. To allow crop monitoring worldwide, on a daily basis, data fusion of images taken by different satellites is required. So far, most researches on data fusion focus on retrospective analysis, while advanced crop monitoring capabilities mandate the use of data in real time mode. Therefore, our project goals were: (1) to build a data-fusion online sy... O. Beeri, R. Pelta, S. Mey-tal, J. Raz

82. Joint Structure and Colour Based Parametric Classification of Grapevine Organs from Proximal Images Through Several Critical Phenological Stages

Proximal colour imaging is the most time and cost-effective automated technology to acquire high-resolution data describing accurately the trellising plane of grapevine. The available textural information is meaningful enough to provide altogether the assessment of additional agronomic parameters that are still estimated either manually or with dedicated and expensive instrumentations. This paper proposes a new framework for the classification of the different organs visible in the trellising... F.Y. Abdelghafour, R. Rosu, B. Keresztes, C. Germain, J. Da costa

83. Designated Value for a Field Polygon Based on Imagery Data: A Case Study of Crop Vigor in Agricultural Application for Irrigation

Any irrigation action for a field management zone, which is based on images, requires a transformation into single value. Since data distribution is ab-normal in an image, using a mean value to estimate the crop coefficient (Kc), an overlaid polygon may not represent properly its water demand. Therefore, this project’s aim was to examine to which extent different statistics of potential designated values will affect an estimated Kc, and consequently affect irrigation practices. ... R. Rud, O. Beeri, S. Mey-tal

84. A Comparison of Three-Dimensional Data Acquisition Methods for Phenotyping Applications

Currently Phenotyping is primarily performed using two-dimensional imaging techniques. While this yields interesting data about a plant, a lot of information is lost using regular cameras. Since a plant is three-dimensional, the use of dedicated 3D-imaging sensors provides a much more complete insight into the phenotype of the plant. Different methods for 3D-data acquisition are available, each with their inherent advantages and disadvantages. These have to be addressed depending on the parti... O. Scholz, F. Uhrmann, S. Gerth, K. Pieger, J. Claußen

85. Nitrogen Sensing by Using Spectral Reflectance Measurements in Cereal Rye Canopy

Cereal rye (cereale secale L.) is a winter crop well suited for cultivation especially besides high yield areas because of its relatively low demands on the soil and on the climate as well. In 2016 about 4.9% of arable land in Germany was cultivated with cereal rye (Statistisches Bundesamt, 2017). Unlike other crops such as wheat, there is little research on cereal rye for site specific farming. Furthermore, also in a cereal rye cultivation it is necessary to minimize nitrogen loss.... M. Strenner, F.X. Maidl, K.J. Hülsbergen

86. Delineation of Site-Specific Nutrient Management Zones to Optimize Rice Production Using Proximal Soil Sensing and Multispectral Imaging

Evaluating nutrient uptake and site-specific nutrient management zones in rice in Costa Rica from plant tissue and soil sampling is expensive because of the time and labor involved.  In this project, a range of measurement techniques were implemented at different vintage points (soil, plant and UAVs) in order to generate and compare nutrient management information.  More precisely, delineation of site-specific nutrient management zones were determined using 1) georeferenced soil/tis... J.E. Villalobos, J.S. Perret, K. Abdalla, C.L. Fuentes, J.C. Rodriguez, W. Novais

87. Real-Time Fruit Detection Using Deep Neural Networks

Proximal imaging using tractor-mounted cameras is a simple and cost-effective method to acquire large quantities of data in orchards and vineyards. It can be used for the monitoring of vegetation and for the management of field operations such as the guidance of smart spraying systems for instance. One of the most prolific research subjects in arboriculture is fruit detection during the growing season. Estimations of fruit-load can be used for early yield assessments and for the monitoring of... B. Keresztes, J. Da costa, D. Randriamanga, C. Germain, F. Abdelghafour

88. Modelling 'Concord' Berry Weight Dynamics

The growth and development of Concord (Vitis labruscana Bailey) depends on internal and external factors. As a result, both vegetative and reproductive cycles of Concord vary based on growing season and vine status. Fresh berry weight also fluctuates depending on the growing season and location of the vineyard. Knowledge of berry weight dynamics across growing season is essential to accurately predict final yield at harvest based on early season crop estimates. The main objective of this stud... G. Badr, T.R. Bates

89. A Comprehensive Stress Index for Evaluating Plant Water Status in Almond Trees

This study evaluated a comprehensive plant water stress index that integrates the canopy temperature and the environmental conditions that can assist in irrigation management. This index—Comprehensive Stress Index (CSI)—is based on the reformulation of the leaf energy balance equation. Specifically, CSI is the ratio of the temperature difference between a dry leaf (i.e. a leaf with a broken stem) and a live leaf (on the same tree) [i.e. Tdry-Tleaf] and the difference between the v... K. Drechsler, I. Kisekka, S. Upadhyaya

90. Two-Layer Multiple Soil-Property Mapping Measured with a Real-Time Soil Sensor

We obtained calibration models for 32 soil properties based on Vis-NIR (350 - 1700 nm) underground soil diffuse reflectance spectra collected using a real-time soil sensor (SAS3000) with a DGPS system, in order to generate soil property maps. We have previously demonstrated one-layer soil maps for soil management decision making by growers; however, for effective crop management, growers often wish to obtain complex layer information for their fields. Thus, in the present study, we measured t... M. Kodaira, S. Shibusawa

91. Proximal Soil Sensing-Led Management Zone Delineation for Potato Fields

A fundamental aspect of precision agriculture or site-specific crop management is the ability to recognize and address local changes in the crop production environment (e.g. soil) within the boundaries of a traditional management unit. However, the status quo approach to define local fertilizer need relies on systematic soil sampling followed by time and labour-intensive laboratory analysis. Proximal soil sensing offers numerous advantages over conventional soil characterization and has shown... A. Biswas, W. Ji, I. Perron, A. Cambouris, B. Zebarth, V. Adamchuk

92. Farm Soil Moisture Mapping Using Reflected GNSS SNR Data Onboard Low Level Flying Aircraft

Soil moisture/water content monitoring (spatial and temporal) is a critical component of farm management decision primarily for crop/plant growth and yield improvement, but also for optimization of practice such as tillage and field treatments. Satellite humidity probes do not deliver the relevant resolution for farming purposes. Ground moisture probes only provide punctual measurements and do not reflect the true spatial variability of soil moisture. Previous studies have demonstra... L. Ameglio, J. Darrozes, J. Dreyer

93. Invasive and Non-Invasive Technology for Measuring Water Content of Crop Leaves in Greenhouse Horticulture

Moisture status in the crop is closely related to various physiological activities of the crop. If we can measure the moisture status in the crop in real time, we can understand the photosynthetic activity, which is an important physiological activity for growing crops, and the movement of the product from photosynthesis. Therefore, we verified it is possible to measure water content of crop leaves nondestructively using invasive method and non-invasive method. As a non-invasive measurement m... H. Umeda, K. Muramatsu, Y. Kawagoe, T. Sugihara, S. Shibusawa, Y. Iwasaki

94. Detecting Variability in Plant Water Potential with Multi-Spectral Satellite Imagery

Irrigation Intelligence is a practice of precise irrigation, with the goal of providing crops with the right amount of water, at the right time, for optimized yield. One of the ways to achieve that, on a global scale, is to utilize Landsat-8 and Sentinel-2 images, providing together frequent revisit cycles of less than a week, and an adequate resolution for detection of 1 ha plots. Yet, in order to benefit from these advantages, it is necessary to examine the information that can be extracted... O. Beeri, S. May-tal, R. Rud, Y. Raz, R. Pelta

95. Review of Developments in Airborne Geophysics and Geomatics to Map Variability of Soil Properties

Over the past 40 years, airborne geophysics and geomatics has become an effective and accepted technology for mapping various signatures on the Earth’s surface and sub-surface. But so far, its airborne application in agriculture is perceived as sub-practical and/or its real value unknown to most stakeholders. In this paper, we are reviewing major technical and commercial achievements and latest developments to date, but also potentials for new developments and applications, of airb... L. Ameglio

96. Sensor Comparison for Yield Monitoring Systems of Small-Sized Potato Harvesters

Yield monitoring of potato in real time during harvesting would be useful for farmers, providing instant yield and income information. In the study, potentials of candidate sensors were evaluated with different yield measurement techniques for yield monitoring system of small-sized potato harvesters. Mass-based (i.e., load cell) and volume-based (i.e., CCD camera) sensors were selected and tested under laboratory conditions. For mass-based sensing, an impact plate instrumented with load cells... K.M. Swe, Y. Kim, D. Jeong, S. Lee, S. Chung, M.S. Kabir

97. On-the-Go Nir Spectroscopy and Thermal Imaging for Assessing and Mapping Vineyard Water Status in Precision Viticulture

New proximal sensing technologies are desirable in viticulture to assess and map vineyard spatial variability. Towards this end, high-spatial resolution information can be obtained using novel, non-invasive sensors on-the-go. In order to improve yield, grape quality and water management, the vineyard water status should be determined. The goal of this work was to assess and map vineyard water status using two different proximal sensing technologies on-the-go: near infrared (NIR) reflectance s... J. Tardaguila, M. Diago, S. Gutierrez, J. Fernandez-novales, E.A. Moreda

98. Monitoring Potassium Levels in Peat-Grown Pineapple Using Selected Spectral Ratios

In this study, we assessed the biophysical changes within pineapple (var. MD2) in response to different potassium (K) rates using a hyperspectral approach. K deficiency was detected at 171 days after planting. Shortage of K also exhibited a shift in red edge towards shorter wavelengths between 500-700 nm. In addition, spectral ranges of 430 nm and 680 nm, as well as 680-752 nm were found to be most effective in differentiating spectral response to varying K rates. Three vegetation indices, i.... S.K. Balasundram, Y. Chong, A. Mohd hanif

99. Quantification of Seed Performance: Non-Invasive Determination of Internal Traits Using Computed Tomography

The application of the 3D mean-shift filter to 3D Computed Tomography Data enables the segmentation of internal traits. Specifically in maize seeds this approach gives the opportunity to separate the internal structure, for example the volume of the embryo, the cavities and the low and high dense parts of the starch body. To evaluate the mean-shift filter, the results were compared to the usage of a median-smoothing filter. To show the relevance of the mean-shift extended image pipeline an au... J. Claussen, N. Wörlein, N. Uhlmann, S. Gerth

100. Innovative Assessment of Cluster Compactness in Wine Grapes from Automated On-the-Go Proximal Sensing Application

Grape cluster compactness affects berry ripening homogeneity, fungal disease incidence, grape composition and wine quality. Therefore, assessing cluster compactness is crucial for sorting wine grapes for the wine industry. Nowadays, cluster compactness assessing methodology is based either on visual inspection performed by trained evaluators (OIV method) or on morphological features of clusters. The goal of this work was to develop an innovative and automated, non-destructive method to assess... J. Tardaguila, F. Palacios, M. Diago, E.A. Moreda

101. Examining the Relationship Between SPAD, LAI and NDVI Values in a Maize Long-Term Experiment

In Hungary, the preconditions for the use of precision crop production have undergone enormous development over the last five years. RTK coverage is complete in crop production areas. Consultants are increasingly using the vegetation index maps from Landsat and Sentinel satellite data, but measurements with on-site proximal plant sensors are also needed to exclude the influence of the atmosphere. The aim of our studies was to compare the values measured by proximal plant sensors in ... P. Ragán, E. Harsányi, J. Nagy, T. Ágnes, T. Rátonyi, A. Vántus, N. Csatári

102. Variability Analysis of Temperature and Humidity for Control Optimization of a Hybrid Dehumidifier with a Heating Module for Greenhouses

Protected horticulture using greenhouses and also recently plant factories is becoming more popular, especially for high-value crops such as paprika, tomato, strawberry, due to year-round production of high yield and better quality crops under controlled environment. Temperature and humidity are most important ambient environmental factors for not only optimum crop growth but also disease control. This study was conducted to analyze vertical and spatial variability of temperature and humidity... Y. Seo, W. Lee, Y. Kim, S. Chung, S. Jang, I. Bae

103. Predicting Dry Matter Composition of Grass Clover Leys Using Data Simulation and Camera-Based Segmentation of Field Canopies into White Clover, Red Clover, Grass and Weeds

Targeted fertilization of grass clover leys shows high financial and environmental potentials leading to higher yields of increased quality, while reducing nitrate leaching. To realize the gains, an accurate fertilization map is required, which is closely related to the local composition of plant species in the biomass. In our setup, we utilize a top-down canopy view of the grass clover ley to estimate the composition of the vegetation, and predict the composition of the dry matter of the for... S. Skovsen, M. Dyrmann, J. Eriksen, R. Gislum, H. Karstoft, R.N. Jørgensen

104. Using a Fully Convolutional Neural Network for Detecting Locations of Weeds in Images from Cereal Fields

Information about the presence of weeds in fields is important to decide on a weed control strategy. This is especially crucial in precision weed management, where the position of each plant is essential for conducting mechanical weed control or patch spraying. For detecting weeds, this study proposes a fully convolutional neural network, which detects weeds in images and classifies each one as either a monocot or dicot. The network has been trained on over 13 000 weed annota... M. Dyrmann, S. Skovsen, R.N. Jørgensen, M.S. Laursen

105. Canopy Parameters in Coffee Orchards Obtained by a Mobile Terrestrial Laser Scanner

The application of mobile terrestrial laser scanner (MTLS) has been studied for different tree crops such as citrus, apple, olive, pears and others. Such sensing system is capable of accurately estimating relevant canopy parameters such as volume and can be used for site-specific applications and for high throughput plant phenotyping. Coffee is an important tree crop for Brazil and could benefit from MTLS applications. Therefore, the purpose of this research was to define a field protocol for... F. Hoffmann silva karp, A. Feritas colaço, R. Gonçalves trevisan, J.P. Molin

106. Machine Monitoring As a Smartfarming Concept Tool

Current development trends are associated with the digitization of production processes and the interconnection of individual information layers from multiple sources into common databases, contexts and functionalities. In order to automatic data collection  of machine operating data, the farm tractors were equipped with monitoring units ITineris for continuous collection and transmission of information from tractors CAN Bus. All data sets are completed with GPS location data. Acrea... M. Kroulik, V. Brant, P. Zabransky, J. Chyba, V. Krcek, M. Skerikova

107. Compensating for Soil Moisture Effects in Estimation of Soil Properties by Electrical Conductivity Sensing

Bulk apparent soil electrical conductivity (ECa) is the most widely used soil sensing modality in precision agriculture. Soil ECa relates to multiple soil properties, including clay content (i.e., texture) and salt content (i.e., salinity). However, calibrations of ECa to soil properties are not temporally stable, due in large part to soil moisture differences between measurement dates. Therefore, the objective of this research was to investigate the effects of temporal soil moisture variatio... K.A. Sudduth, N.R. Kitchen, E.D. Vories, S.T. Drummond

108. Using Canopy Hyperspectral Measurements to Evaluate Nitrogen Status in Different Leaf Layers of Winter Wheat

Nitrogen (N) is one of the most important nutrient matters for crop growth and has the marked influence on the ultimate formation of yield and quality in crop production. As the most mobile nutrient constituent, N always transfers from the bottom to top leaves under N stress condition. Vertical gradient changes of leaf N concentration are a general feature in canopies of crops. Hence, it is significant to effectively acquire vertical N information for optimizing N fertilization mana... X. Xu, Z. Li, G. Yang, X. Gu, X. Song, X. Yang, H. Feng

109. Precision Agriculture Research Infrastructure for Sustainable Farming

Precision agriculture is an emerging area at the intersection of engineering and agriculture, with the goal of intelligently managing crops at a microscale to maximize yield while minimizing necessary resource. Achieving these goals requires sensors and systems with predictive models to constantly monitor crop and environment status. Large datasets from various sensors are critical in developing predictive models which can optimally manage necessary resources. Initial experiments at Universit... C. Lai, C. Min, R. Chiang, A. Hafferman, S. Morgan

110. Delineation of Soil Management Zones: Comparison of Three Proximal Soil Sensor Systems Under Commercial Potato Field in Eastern Canada.

Precision agriculture (PA) involves optimization of seeding, fertilizer application, irrigation, and pesticide use to optimize crop production for the purpose of increasing grower revenue and protecting the environment. Potato crops (Solanum tuberosum L.) are recognized as good candidates for the adoption of PA because of the high cost of inputs. In addition, the sensitivity of potato yield and quality to crop management and environmental conditions makes precision management economicall... A. Cambouris, I. Perron, B. Zebarth, F. Vargas, K. Chokmani, A. Biswas, V. Adamchuk

111. Ground Vehicle Mapping of Fields Using LiDAR to Enable Prediction of Crop Biomass

Mapping field environments into point clouds using a 3D LIDAR has the ability to become a new approach for online estimation of crop biomass in the field. The estimation of crop biomass in agriculture is expected to be closely correlated to canopy heights. The work presented in this paper contributes to the mapping and textual analysis of agricultural fields. Crop and environmental state information can be used to tailor treatments to the specific site. This paper presents the current results... M.P. Christiansen, M.S. Laursen, R.N. Jørgensen, S. Skovsen, R. Gislum

112. Soybean Plant Phenotyping Using Low-Cost Sensors

Plant phenotyping techniques are important to present the performance of a crop and it interaction with the environment. The phenotype information is important for plant breeders to analyze and understand the plant responses from the ambient conditions and the inputs offered for it. However, for conclusive analysis it is necessary a large number of individuals. Thus, phenotyping is the bottleneck of plant breeding, a consequence of the labor intensive and costly nature of the classical phenot... M.N. Ferraz, R.G. Trevisan, M.T. Eitelwein, J. Molin, F.H. Karp

113. Using Precision Agriculture Tools and Improved Data Analysis for Evaluating Effects of Integrated Nutrient Management Programs

Integrated nutrient management (INM) practices are becoming common under intensive agricultural systems in Chile. Practices include, the use of organic matter, in different sources, soil microbial inoculants, and the application of biostimulants, of different origin. Compared to the application of macronutrients, for example, the effects of these products on crops are rather modest and require lower experimental errors to be proven; besides, trials made at the field level, many times do not h... R. Ortega

114. Mapping Leaf Area Index of Maize in Tasseling Stage Based on Beer-Lambert Law and Landsat-8 Image

Leaf area index (LAI) is one of the important structural parameters of crop population, which could be used to monitor the variety of crop canopy structure and analyze photosynthesis rate. Mapping leaf area index of maize in a large scale by using remote sensing technology is very important for management of fertilizer and water, monitoring growth change and predicting yield. The Beer-Lambert law has been preliminarily applied to develop inversion model of crop LAI, and has achieved good appl... X. Gu, S. Wang, G. Yang, X. Xu

115. Implementation of a CAN Bus System to Monitor Hydroponic Systems

Controlled Area Network (CAN) bus systems designed for greenhouse monitoring have been proposed to measure soil moisture content, yet they are still absent from hydroponic systems. In this study, irrigation control, monitoring of substrate moisture levels and temperature were achieved using a CAN bus system connected to hydroponic beds. In total, five nodes were mounted on five hydroponic beds and two irrigation methods were compared on lettuce and kale: first, where a pre-set timer activated... P. Tikasz, R.M. Buelvas, M. Lefsrud, V. Adamchuk

116. Feasibility of Estimating the Leaf Area Index of Maize Traits with Hemispherical Images Captured from Unmanned Aerial Vehicles

Feeding a global population of 9.1 billion in 2050 will require food production to be increased by approximately 60%. In this context, plant breeders are demanding more effective and efficient field-based phenotyping methods to accelerate the development of more productive cultivars under contrasting environmental constraints. The leaf area index (LAI) is a dimensionless biophysical parameter of great interest to maize breeders since it is directly related to crop productivity. The LAI is def... M. Perez-ruiz, E. Apolo-apolo, G. Egea, J. Martinez-guanter, C. Marin-barrero

117. Evaluation of HLB-Infected Citrus Rootstocks Using Ground Penetrating Radar

Citrus production in Florida continues to decline steadily, since the arrival of Huanglongbing (HLB or citrus greening). HLB does not kill the tree, but HLB-infected trees become less productive. Since now, there is no cure for this disease. However, several strategies have been developed to manage and control HLB-infected citrus trees. We have developed and evaluated a heat thermotherapy system (short-term solution) for sustaining productivity of HLB-affected trees. This system heats the can... Y. Ampatzidis, M. Derival, S. Kakarla, U. Albrecht, X. Zhang

118. Evaluation of an Artificial Neural Network Approach for Prediction of Corn and Soybean Yield

The ability to predict crop yield during the growing season is important for crop income, insurance projections and for evaluating food security. Yet, modeling crop yield is challenging because of the complexity of the relationships between crop growth and the interrelated predictor variables. Artificial neural networks (ANNs) are useful for such complex systems as they can capture non-linear relationships of data without explicitly knowing the underlying processes. In this study, an ANN-base... A. Kross, G. Kaur, E. Znoj, D. Callegari, M. Sunohara, H. Mcnairn, D. Lapen, H. Rudy, L. Van vliet

119. Field Phenotyping and an Example of Proximal Sensing of Photosynthesis

Field phenotyping conceptually can be divided in five pillars 1) traits of interest 2) sensors to measure these traits 3) positioning systems to allow high throughput measurements by the sensors 4) experimental sites and 5) environmental monitoring. In this paper we will focus on photosynthesis as trait of interest, measured by remote active fluorescence. The sensor presented is the Light Induced Fluorescence Transient (LIFT) instrument. The LIFT instrument is integrated in three positioning ... O. Muller, B. Keller, L. Zimmermanm, C. Jedmowski, V. Pingle, K. Acebron, N. Zendonadi, A. Steier, R. Pieruschka, U. Schurr, U. Rascher, T. Kraska

120. Towards Universal Applicability of On-the-Go Gamma-Spectrometry for Soil Texture Estimation in Precision Farming by Using Machine Learning Applications

High resolution soil data are an essential prerequisite for the application of precision farming techniques. Sensor-based evaluation of soil properties may replace or at least reduce laborious, time-consuming and expensive soil sampling with subsequent measurements in the lab. Gamma spectrometry usually provides information that can be translated into topsoil texture data after calibration. This is because the natural content of the radioactive isotopes 40-K, 232-Th, and 238-U as we... S. Pätzold, T. heggemann, M. Leenen, S. Koszinski, K. Schmidt, G. Welp

121. Main Stream Precision Farming - 7.000 VRA Maps for Winter Rapeseed

SEGES is owned by the Danish farmers and is an agricultural advisory centre advising landowners with a total of 2.1 mill hectare. One of SEGES’s goals is to make precision farming mainstream. One step in the process of making precision farming mainstream was in 2016 to give all farmers access to the free internet application CropSAT.dk. Here farmers can make variable rate application (VRA) maps based on satellite data from Sentinel-2. But this is not enough to m... R. Hoerfarter

122. Development of a Soil ECa Inversion Algorithm for Topsoil Depth Characterization

Electromagnetic induction (EMI) proximal soil sensor systems can deliver rapid information about soil. One such example is the DUALEM-21S (Dualem, Inc. Milton, Ontario, Canada). EMI sensors measure soil apparent electrical conductivity (ECa) corresponding to different depth of investigation depending on the instrument configuration. The interpretation of the ECa measurements is not straightforward and it is often site-specific. Inversion is required to explore specific depths. This inversion ... E. Leksono, V. Adamchuk, W. Ji, M. Leclerc

123. Laser Triangulation for Crop Canopy Measurements

From a Precision Agriculture perspective, it is important to detect field areas where variabilities in the soil are significant or where there are different levels of crop yield or biomass. Information describing the behavior of the crop at any specific point in the growing season typically leads to improvements in the manner the local variabilities are addressed. The proper use of dense, in-season sensor data allows farm managers to optimize harvest plans and shipment schedules under variabl... R.M. Buelvas, V.I. Adamchuk

124. Comparison of the Performance of Two Vis-NIR Spectrometers in the Prediction of Various Soil Properties

Spectroscopy has shown capabilities of predicting certain soil properties. Hence, it is a promising avenue to complement traditional wet chemistry analysis that is costly and time-consuming. This study focuses on the comparison of two Vis-NIR instruments of different resolution to assess the effect of the resolution on the ability of an instrument to predict various soil properties. In this study, 798 air dried and compressed soil samples representing different agro-climatic conditions across... M. Marmette, V. Adamchuk, J. Nault, S. Tabatabai, R. Cocciardi

125. Development of a Manual Soil Sensing System for Measuring Multiple Chemical Soil Properties in the Field

Variable Rate Fertilizer Application (VRA) requires the input of soil chemical data. One of the preferred methods for analyzing soil chemical properties in the field is by using Ion Selective Electrodes (ISEs). To accommodate portability in soil measurements, a manual soil sampling system was developed. Nitrate, Phosphate and pH ISEs were integrated to provide a general outlook on the condition of essential soil nutrients. These ISEs were placed on a modified hand-held soil sampler equip... E. Leksono, V. Adamchuk, J. Whalen, R. Buelvas

126. Real Time Precision Irrigation with Variable Setpoint for Strawberry to Generate Water Savings

Water is a precious resource that is becoming increasingly scarce as the population grows and water resources are depleted in some locations or under increased control elsewhere, due to local availability or groundwater contamination issues. It obviously affects strawberry (Fragaria x ananassa Duch.) production in populated areas and water cuts are being imposed to many strawberry growers to save water, with limited information on the impact on crop yield. Precision irrigation technologies ar... J. Caron, L. Anderson, G. Sauvageau, L. Gendron

127. Observational Studies in Agriculture: Paradigm Shift Required

There is a knowledge gap in agriculture. For instance, there is no way to tell with precision what is the outcome of cutting N fertilizer by a quarter on important outcomes such as yield, net return, greenhouse gas emissions or groundwater pollution. Traditionally, the way to generate knowledge in agriculture has been to conduct research with the experimental method where experiments are conducted in a controlled environment with trials replicated in space a... L. Longchamps, B. Panneton, N. Tremblay

128. Calculating the Water Deficit of Apple Orchard by Means of Spatially Resolved Approach

In semi-humid climate, spatially resolved analysis of water deficit was carried out in apple orchard (Malus x domestica 'Pinova'). The meteorological data were recorded daily by a weather station. The apparent soil electrical conductivity (ECa) was measured at field capacity, and twenty soil samples in 30 cm were gathered for texture, bulk density, and gravimetric soil water content analyses. Furthermore, ten trees were defoliated in different ECa regions in order to estimate the leaf... N. Tsoulias, D. Paraforos, N. Brandes, S. Fountas, M. Zude-sasse

129. Optical High-Resolution Camera System with Computer Vision Software for Recognizing Insects, Fruit on Trees, Growth of Crops

With the inspiration of helping the farmer to grow his crop in the optimal way, Pessl Instruments GmbH, from Weiz, Austria, developed optical high-resolution camera system, together with a computer vision software which is able to recognize insects, fruits on trees and growth of crop. Pessl Instruments develops decision support system which is consisting from remote monitoring of insect traps and remote monitoring of fields and crops. Optical high-resolution camera system can be installed on ... J. Potrpin, G. Pessl, D. Najvirt, C. Pilz

130. Design of Ground Surface Sensing Using RADAR

Ground sensing is the key task in harvesting head control system. Real time sensing of field topography under vegetation canopy is very challenging task in wild blueberry cropping system. This paper presents the design of an ultra-wide band RADAR sensing, scanning device to recognize the soil surface level under the canopy structure. Requirements for software and hardware were considered to determine the usability of the ultra-wide band RADAR system.An automated head ... M.M. Mohamed, Q. Zaman, T. Esau, A. Farooque

131. Map Whiteboard As Collaboration Tool for Smart Farming Advisory Services

Precision agriculture, a branch of smart farming, holds great promise for modernization of European agriculture both in terms of environmental sustainability and economic outlook.  The vast data archives made available through Copernicus and related infrastructures, combined with a low entry threshold into the domain of AI-technologies has made it possible, if not outright easy, to make meaningful predictions that divides  individual agricultural fields into zones where variable rat... K. Charvat, R. Berzins, R. Bergheim, F. Zadrazil, J. Macura, D. Langovskis, H. Snevajs, H. Kubickova, S. Horakova, K. Charvat jr.

132. Comparison of Different Aspatial and Spatial Indicators to Assess Performance of Spatialized Crop Models at Different Within-field Scales

Most current crop models are point-based models, i.e. they simulate agronomic variables on a spatial footprint on which they were initially designed (e.g. plant, field, region scale). To assess their performances, many indicators based on the comparison of estimated vs observed data, can be used such as root mean square error (RMSE) or Willmott index of agreement (D-index) among others. However, shifting model use from a strategic objective to tactical in-season management is becoming a signi... D. Pasquel, S. Roux, B. Tisseyre, J.A. Taylor

133. Survey Shows Specialty and Commodity Crop Retailers Use Precision Agriculture Differently

The 2021 CropLife-Purdue Survey of precision agricultural practices by US agricultural input dealers serving the American grain and oilseed sector shows that most of them use GPS guidance and related technologies like sprayer boom control, most provide variable rate fertilizer services, and the majority say that fertilizer decisions are influenced by grower data. In contrast, dealers serving horticultural and specialty crop farms indicate comparatively modest adoption of many precision agricu... B.J. Erickson, J. Lowenberg-deboer

134. Investigating Spatial Relationship of Apparent Electrical Conductivity with Turfgrass and Soil Characteristics in Sand-capped Golf Course Fairways

Turfgrass quality decreases when grown on fine textured soils that are irrigated with poor quality water. As a result, sand-capping (i.e., a sand layer above existing native soil) is now considered during golf course fairway renovation and construction. Mapping spatial variability of soil apparent electrical conductivity (ECa) has recently been suggested to have applications for precision turfgrass management (PTM) in native soil fairways, but sand-capped fairways have received les... C. Straw, B. Wyatt, A.P. Smith, K. Watkins, S. Hong, W. Floyd, D. Williams, C. Garza, T. Jansky

135. Scaling Up Window-based Regression for Crop-row Detection

Crop-row detection is a central element of weed detection and agricultural image processing tasks. With the increased availability of high-resolution imagery, a precise locating of crop rows is becoming practical in the sense that the necessary data are commonly available. However, conventional image processing techniques often fail to scale up to the data volumes and processing time expectations. We present an approach that computes regression lines ... A.M. Denton, G.E. Hokanson, P. Flores

136. Comparison and Validation of Different Soil Survey Techniques to Support a Precision Agricultural System

The data need of precision agriculture has resulted in an intensive increase in the number of modern soil survey equipment and methods available for farmers and consultants. In many cases these survey methods cannot provide accurate information under the used environmental conditions. On a 36 hectare experimental field, several methods have been compared to identify the ones which can support the PA system the best. The methods included contact and non contact soil scanning, yield mapping, hi... V. Lang, G. Tóth, S. Csenki, D. Dafnaki

137. Optimization of Batch Processing of High-density Anisotropic Distributed Proximal Soil Sensing Data for Precision Agriculture Purposes

The amount of spatial data collected in agricultural fields has been increasing over the last decade. Advances in computer processing capacity have resulted in data analytics and artificial intelligence becoming hot topics in agriculture. Nevertheless, the proper processing of spatial data is often neglected, and the evaluation of methods that efficiently process agricultural spatial data remains limited. Yield monitor data is a good example of a well-established methodology for data processi... F. Hoffmann silva karp, V. Adamchuk, A. Melnitchouck, P. Dutilleul

138. Using On-the-Go Soil Sensors to Assess Spatial Variability within the KS Wheat Breeding Program

In plant breeding the impacts of genotype by environment interactions and the challenges to quantify these interactions has long been recognized. Both macro and microenvironment variations in precipitation, temperature and soil nutrient availability have been shown to impact breeder selections. Traditionally, breeders mitigate these interactions by evaluating genotype performance across varying environments over multiple years. However, limitations in labor, equipment and seed availably can l... B. Evers, M. Rekhi, G. Hettiarachchi, S. Welch, A. Fritz, P.D. Alderman, J. Poland

139. Changes in Soil Quality when Building Ridges for Fruit Plantation

Many fruit plantations are usually performed in ridges for various reasons including, escaping from a clay horizon, improving overall soil quality and drainage, among others. Normally ridges are built using the surface horizons, producing a mixture of soils layers, and therefore changing the quality of the soil at the rooting zone. We were interested in studying the changes in soil properties when building ridges in a flat alluvial soil that was planted with avocado. A det... H.P. Poblete, R.A. Ortega

140. Yield Estimation for Avocado Using Systematic Sampling Techniques

Avocado is a high value crop ranking fourth among the planted fruit species in Chile with more than 32,000 ha. Yield estimation is an important challenge in avocado due to its phenology, the size of the tree, and to the large variability usually observed within the orchards. Due to the practical difficulties to sample the trees we use the following approach: 1) establish a systematic, non-aligned grid with > 20 sampling points (trees)/field, 2) previous to harvest, and ... H.P. Poblete, R.A. Ortega

141. Farmers’ and Experts’ Perceptions of Precision Farming Impacts on Economic Efficiency, Food Security, Climate and Environmental Sustainability

“Global food security could be in jeopardy, due to mounting pressures on natural resources and to climate change, both of which threaten the sustainability of food systems at large. Excessive fertilizer use can contribute to problems of eutrophication, acidification, climate change and the toxic contamination of soil, water and air. Lack of fertilizer application may cause the degradation of soil fertility. Agricultural production systems need to focus more on the effective co... C.I. Anaba

142. Robot Safety Issues in Field Crops - EU Regulatory Issues and Technical Aspects

The use of robots in Precision Agriculture is becoming of great interest, but they introduce a new kind of risk in the field due to their self-acting and self-driving capability. Safety issues appear with respect to people working in the same field in human-robot collaboration (HRC) framework or to the accidental presence of humans or animals. A robot out of control may also invade other areas causing unpredictable harm and damage. Currently, the safety of highly automated agricultu... M. Canavari, P. Lattanzi, G. Vitali, L. Emmi

143. Cloud Correction of Sentinel-2 NDVI Using S2cloudless Package

Optical satellite-derived Normalized Difference Vegetation Index (NDVI) is by far the most commonly used vegetation index value for crop monitoring. However, it is quite sensitive to the cloud, and cloud shadows and significantly decreases its usability, especially in agricultural applications. Therefore, an accurate and reliable cloud correction method is mandatory for its effective application. To address this issue, we have developed an approach to correct the NDVI values of each and every... A. Saxena, M. Dash, A.P. Verma

144. Next in Precision Agriculture: Detecting and Correcting Pixels with Machinery Track Line Within Farms

With more satellites orbiting the earth, monitoring of fields using satellite data has become easier and ubiquitous. Frequent observations of a field can provide vital cues about field health and management practices. However, farm analytical statistics derived from such datasets often need modification to create practical applications. This paper focuses on the detection and removal of field machinery track line pixels to reduce their effect on satellite-based agronomic recommendation and pr... G. Rathee, M. Sielenkemper

145. Automated Geometrical Field Boundary Delineation Algorithm for Adjacent Job Sites

Establishing farmland geometric boundaries is a critical component of any assistive technology, designed towards the automation of mechanized farming systems. Observing farmland boundaries enables farmers and farm machinery contractors to determine; seed purchase orders, fertiliser application rate, and crop yields. Farmers must supply acreage measurements to regulatory bodies, who will use the geometric data to develop environmental policies and allocate farm subsidies appropriately. Agricu... S.J. Harkin